氧化应激
细胞凋亡
丙二醛
神经保护
标记法
医学
药理学
莫里斯水上航行任务
内科学
免疫学
麻醉
海马结构
生物
生物化学
作者
Yue‐Yu Hu,Man Huang,Pengfei Wang,Qiuping Xu,BaoRong Zhang
标识
DOI:10.1016/j.intimp.2013.03.019
摘要
Abstract Background Omi/HtrA2 is a proapoptotic mitochondrial serine protease involved in caspase-dependent and caspase-independent cell apoptosis. It has been verified that Omi/HtrA2 is related to apoptosis due to oxidative stress, which may play an important role in the integrity of mitochondria. Ucf-101 is a specific inhibitor of Omi/HtrA2 and it has been demonstrated that Ucf-101 has organ protective effects in a variety of in vitro and in vivo studies. The aim of our study was to examine the neuroprotective effects of Ucf-101 on cerebral oxidative injury and cognitive impairment in septic rats. Methods Male Sprague Dawley rats are subjected to cecal ligation and puncture (CLP) or sham-operated laparotomy. Rats were divided into 4 groups: (1) a sham group plus normal saline (10 mL/kg); (2) a sham group plus Ucf-101 (10 umol/kg); (3) CLP plus normal saline (10 mL/kg); and (4) CLP plus Ucf-101 (10 umol/kg). Brain tumor necrosis factor (TNF)-α level, caspase-3 and caspase-9 activities, malondialdehyde (MDA) content and catalase (CAT) activities were examined. TUNEL staining was utilized to evaluate the amount of apoptosis and the cognitive function was evaluated by the MWM test. The study also assessed the clinical scores of animals and the survival time for the 7-day period. Results CLP resulted in a poor survival rate, evidence of hippocampal oxidative injury, cell apoptosis and cognitive dysfunction as well as elevated TNF-α level and caspases activities, increased weight loss and clinical scores. Ucf-101 pre-treatment could significantly inhibit caspases activities and cell apoptosis, reduce TNF-α and MDA levels, slightly reverse CAT activities in the brain and attenuate this CLP effect on cognitive dysfunction. In addition, the survival rate and survival time was significantly improved by pre-treatment with Ucf-101. Conclusions The present results demonstrated that ucf-101 has the neuroprotective effects on cerebral oxidative injury and cognitive impairment in septic rats.
科研通智能强力驱动
Strongly Powered by AbleSci AI