多硫化物
拉曼光谱
密度泛函理论
分析化学(期刊)
拉曼散射
极化率
谱线
化学
分子
计算化学
物理化学
电极
光学
物理
有机化学
电解质
天文
作者
Markus Hagen,Peter Schiffels,Matt Hammer,Susanne Dörfler,Jens Tübke,Michael J. Hoffmann,Holger Althues,Stefan Kaskel
摘要
To obtain information about the Li-S reaction mechanism through spectroscopy, a Raman literature study, polysulfide vibrational mode calculations and experimental in-situ measurements were performed. A special test cell was constructed to examine in-situ Raman spectra in the spectral range from 100 cm−1 to 600 cm−1 during charge and discharge in the voltage range of 1.5 V to 3.0 V. In order to assign the in-situ Raman data and to support the interpretation of the observed changes in the overall Raman-spectrum, several reference measurements on well-defined substances were conducted. The reference measurements included pure solvents, electrolytes and polysulfide solutions prepared from stoichiometric mixtures of S8 and Li2S powders. The assignment of the observed Raman-spectra was further based on a comparison with purely theoretical data for the vibrational modes of the polysulfide di-anions Sn2− and radical mono-anions Sn− calculated at the B3PW91/6–311G(2df,p) level of density functional theory (DFT). The DFT data for the vibrational spectra, corrected for solvent effects in the framework of the polarizable continuum model (PCM), allowed an identification of several characteristic features in the in-situ Raman spectra.
科研通智能强力驱动
Strongly Powered by AbleSci AI