Accurate and efficient modeling of the detector response in small animal multi-head PET systems

探测器 扫描仪 蒙特卡罗方法 计算机科学 图像质量 算法 计算 成像体模 规范化(社会学) 迭代重建 物理 计算机视觉 人工智能 光学 数学 图像(数学) 统计 社会学 人类学
作者
Matteo Cecchetti,Sascha Moehrs,Nicola Belcari,A. Del Guerra
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:58 (19): 6713-6731 被引量:10
标识
DOI:10.1088/0031-9155/58/19/6713
摘要

In fully three-dimensional PET imaging, iterative image reconstruction techniques usually outperform analytical algorithms in terms of image quality provided that an appropriate system model is used. In this study we concentrate on the calculation of an accurate system model for the YAP-(S)PET II small animal scanner, with the aim to obtain fully resolution- and contrast-recovered images at low levels of image roughness. For this purpose we calculate the system model by decomposing it into a product of five matrices: (1) a detector response component obtained via Monte Carlo simulations, (2) a geometric component which describes the scanner geometry and which is calculated via a multi-ray method, (3) a detector normalization component derived from the acquisition of a planar source, (4) a photon attenuation component calculated from x-ray computed tomography data, and finally, (5) a positron range component is formally included. This system model factorization allows the optimization of each component in terms of computation time, storage requirements and accuracy. The main contribution of this work is a new, efficient way to calculate the detector response component for rotating, planar detectors, that consists of a GEANT4 based simulation of a subset of lines of flight (LOFs) for a single detector head whereas the missing LOFs are obtained by using intrinsic detector symmetries. Additionally, we introduce and analyze a probability threshold for matrix elements of the detector component to optimize the trade-off between the matrix size in terms of non-zero elements and the resulting quality of the reconstructed images. In order to evaluate our proposed system model we reconstructed various images of objects, acquired according to the NEMA NU 4-2008 standard, and we compared them to the images reconstructed with two other system models: a model that does not include any detector response component and a model that approximates analytically the depth of interaction as detector response component. The comparisons confirm previous research results, showing that the usage of an accurate system model with a realistic detector response leads to reconstructed images with better resolution and contrast recovery at low levels of image roughness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助Gray采纳,获得10
1秒前
禾子完成签到,获得积分10
1秒前
好好做人发布了新的文献求助10
2秒前
comosum发布了新的文献求助10
2秒前
5秒前
kk完成签到,获得积分10
5秒前
5秒前
王木木完成签到 ,获得积分10
5秒前
6秒前
zzzj完成签到 ,获得积分10
7秒前
7秒前
Come完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
yun完成签到,获得积分10
9秒前
9秒前
文献求助完成签到,获得积分10
10秒前
谷飞飞发布了新的文献求助30
10秒前
10秒前
2257778553完成签到,获得积分10
10秒前
comosum完成签到,获得积分10
10秒前
11秒前
Akim应助霸气的金鱼采纳,获得10
11秒前
瘦瘦妖妖发布了新的文献求助10
11秒前
12秒前
wwww发布了新的文献求助10
12秒前
12秒前
14秒前
一沙发布了新的文献求助10
14秒前
桃桃发布了新的文献求助30
14秒前
追寻盼烟发布了新的文献求助10
14秒前
华姝发布了新的文献求助10
14秒前
研友_7LMbwn发布了新的文献求助10
14秒前
LeoChris发布了新的文献求助10
16秒前
yueyan完成签到,获得积分10
16秒前
包容可乐发布了新的文献求助10
16秒前
16秒前
小羊发布了新的文献求助30
18秒前
18秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842011
求助须知:如何正确求助?哪些是违规求助? 3384056
关于积分的说明 10532506
捐赠科研通 3104394
什么是DOI,文献DOI怎么找? 1709629
邀请新用户注册赠送积分活动 823315
科研通“疑难数据库(出版商)”最低求助积分说明 773909