富勒烯
材料科学
聚合物
结晶度
化学工程
薄膜
结晶
聚合物太阳能电池
结晶学
纳米技术
有机化学
化学
复合材料
工程类
作者
Yu‐Wei Su,Chih‐Ming Liu,Jian-Ming Jiang,Cheng‐Si Tsao,Hou‐Chin Cha,U‐Ser Jeng,Hsing-Lung Chen,Kung‐Hwa Wei
摘要
The power conversion efficiencies of polymer/fullerene solar cells are critically dependent on the nanometer-scale morphologies of their active layers, which are typically processed from solution. Using synchrotron wide- and small-angle X-ray scattering, we have elucidated the intricate mechanism of the structural transitions from solutions to solid films of the crystalline polymer poly[bis(dodecyl)thiophene-thieno[3,4-c]pyrrole-4,6-dione] (PBTTPD) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), including the effect of the solvent additive 1,6-diiodohexane (DIH). We found that the local assembly of rigid-rod PBTTPD segments that formed in solution instantly and then relaxed within several hundred seconds upon cooling to room temperature from 90 °C could re-emerge and develop into seeds for subsequent crystallization of the polymer in the solid films. At room temperature (25 °C), the presence of DIH in chlorobenzene slightly enhanced the formation of local assembly PBTTPD segments in the supersaturated PBTTPD in PBTTPD/PC71BM blend solution. Two cases of films were subsequently developed from these blend solutions with drop-casted and spin-coated methods. For spin-coated thin films (90 nm thick), which evolve quickly, polymer's crystallinity and the fullerene packing in the solid-state thin films were enhanced in the case of involving DIH. Regarding the effect of DIH for processing the drop-casted thick films (2.5 μm thick), which evolve slowly, DIH has no observable effect on PBTTPD/PC71BM structure. Our results provide some understanding of the mechanism behind the structural development of polymer/fullerene blends upon their transitions from solution to the solid state, as well as the key functions of the additive.
科研通智能强力驱动
Strongly Powered by AbleSci AI