Molecular Origins of the Zeta Potential

Zeta电位 化学 纳米技术 材料科学 纳米颗粒
作者
Milan Předota,Michael L. Machesky,David J. Wesolowski
出处
期刊:Langmuir [American Chemical Society]
卷期号:32 (40): 10189-10198 被引量:101
标识
DOI:10.1021/acs.langmuir.6b02493
摘要

The zeta potential (ZP) is an oft-reported measure of the macroscopic charge state of solid surfaces and colloidal particles in contact with solvents. However, the origin of this readily measurable parameter has remained divorced from the molecular-level processes governing the underlying electrokinetic phenomena, which limits its usefulness. Here, we connect the macroscopic measure to the microscopic realm through nonequilibrium molecular dynamics simulations of electroosmotic flow between parallel slabs of the hydroxylated (110) rutile (TiO2) surface. These simulations provided streaming mobilities, which were converted to ZP via the commonly used Helmholtz-Smoluchowski equation. A range of rutile surface charge densities (0.1 to -0.4 C/m2), corresponding to pH values between about 2.8 and 9.4, in RbCl, NaCl, and SrCl2 aqueous solutions, were modeled and compared to experimental ZPs for TiO2 particle suspensions. Simulated ZPs qualitatively agree with experiment and show that "anomalous" ZP values and inequalities between the point of zero charge derived from electrokinetic versus pH titration measurements both arise from differing co- and counterion sorption affinities. We show that at the molecular level the ZP arises from the delicate interplay of spatially varying dynamics, structure, and electrostatics in a narrow interfacial region within about 15 Å of the surface, even in dilute salt solutions. This contrasts fundamentally with continuum descriptions of such interfaces, which predict the ZP response region to be inversely related to ionic strength. In reality the properties of this interfacial region are dominated by relatively immobile and structured water. Consequently, viscosity values are substantially greater than in the bulk, and electrostatic potential profiles are oscillatory in nature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江风海韵完成签到,获得积分10
刚刚
1秒前
LYZ完成签到,获得积分10
1秒前
2秒前
羊水彤发布了新的文献求助10
2秒前
科研通AI5应助学习采纳,获得10
3秒前
黎明之前失眠完成签到,获得积分10
4秒前
4秒前
大力丹琴完成签到,获得积分10
5秒前
橙子发布了新的文献求助10
6秒前
eleven发布了新的文献求助10
6秒前
小猪少年呆呆完成签到 ,获得积分10
6秒前
6秒前
YSY完成签到,获得积分10
8秒前
CodeCraft应助羊水彤采纳,获得10
8秒前
半岛海盐完成签到,获得积分20
8秒前
皖医梁朝伟完成签到 ,获得积分10
9秒前
潇湘夜雨完成签到,获得积分10
9秒前
周周发布了新的文献求助10
9秒前
10秒前
12秒前
14秒前
半岛海盐发布了新的文献求助10
15秒前
eleven完成签到,获得积分10
15秒前
火星探险发布了新的文献求助10
20秒前
VLH完成签到,获得积分10
21秒前
lzp完成签到 ,获得积分10
23秒前
纷纭完成签到,获得积分10
26秒前
周周完成签到,获得积分10
27秒前
30秒前
火星探险完成签到,获得积分10
30秒前
科研通AI5应助giucher采纳,获得10
30秒前
天天快乐应助萱萱采纳,获得10
31秒前
仓颉发布了新的文献求助10
31秒前
zhao完成签到,获得积分10
32秒前
物质尽头完成签到 ,获得积分10
32秒前
夏一苒发布了新的文献求助10
35秒前
zz完成签到,获得积分10
39秒前
Connor完成签到,获得积分10
40秒前
明理思真发布了新的文献求助10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776189
求助须知:如何正确求助?哪些是违规求助? 3321701
关于积分的说明 10207096
捐赠科研通 3036920
什么是DOI,文献DOI怎么找? 1666478
邀请新用户注册赠送积分活动 797492
科研通“疑难数据库(出版商)”最低求助积分说明 757859