反键分子轨道
催化作用
合理设计
产量(工程)
分子轨道
二进制数
工作(物理)
计算机科学
化学
材料科学
电子结构
动力学
轨道能级差
焊剂(冶金)
组合化学
计算化学
纳米技术
钥匙(锁)
化学工程
桥接(联网)
原子轨道
反应机理
密度泛函理论
纳米颗粒
生物系统
物理
作者
Yifei Wang,Dongyue Liu,Hao Wang,Yuqing Ma,Xuedi Sun,Yiyang Wu,Meng Liu,Yong-zhen Peng,Yanbiao Liu,Yifei Wang,Dongyue Liu,Hao Wang,Yuqing Ma,Xuedi Sun,Yiyang Wu,Meng Liu,Yong-zhen Peng,Yanbiao Liu
标识
DOI:10.1038/s41467-025-65500-w
摘要
The rational design of high-efficiency Fenton-like catalysts remains hindered by insufficient understanding of electronic-geometric synergy in peroxymonosulfate (PMS) activation. We transcend classical d-band theory by proposing a machine learning-decoded binary descriptor (BD) unifying orbital electronic structure (IOES) and orbital geometric structure (IOGS) indices to predict PMS activation pathways across diverse coordination environments. This BD framework quantifies antibonding orbital occupancy (via d-p hybridization) and geometric constraints (interatomic distance/O-H elongation), enabling precise screening of Fe-based dual-atom catalysts (DACs). Among FeM DACs (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu), FeMn DACs with optimal BD values (IOES = 0.86, IOGS = 0.40) achieved 94.2% 1O2 yield and fast kinetics (kobs = 1.2 min⁻1) toward sulfadiazine degradation. Crucially, a flow-through reactor demonstrated >90% pollutant removal for 30 days at industrial flux (122.3 L m⁻2 h⁻1). This work establishes universal orbital-level design principles for sustainable water remediation, bridging atomic-scale insights to engineering-scale implementation.
科研通智能强力驱动
Strongly Powered by AbleSci AI