亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The application of machine learning for infant cries classification and pathological cries detection: A systematic review

人工智能 机器学习 分类器(UML) Mel倒谱 病态的 心理学 婴儿哭闹 模糊逻辑 计算机科学 特征选择 混合模型 自然语言处理 典型地发展 倒谱 统计分类 支持向量机 语音识别
作者
Sudhathai Sirithepmontree,Nattasit Katchamat,Sasitara Nuampa
出处
期刊:Science Progress [SAGE]
卷期号:109 (1)
标识
DOI:10.1177/00368504251410776
摘要

Objective This study aims to systematically review and synthesize the studies on the application of machine learning for classifying infant cry types, identifying pathological cries, and evaluating the accuracy of infant cry recognition. Methods This review followed the PRISMA guidelines and was registered in PROSPERO (CRD42024600969). The literature search was conducted on four data sources: PubMed, CINAHL, Embase, and IEEE Xplore. The included studies focused on machine learning-based classification of infants’ needs cries or pathological cries. These were published in English between January 1, 2014 and October 31, 2024. Study quality was assessed using the QUADAS-2 tool. Results Of 919 studies were identified, 17 were included in the final synthesis. Machine learning can classify infant cries into two main types: infant needs’ cries and pathological cries, with some studies addressing both. Needs-related cries comprised nine subtypes, while pathological cries included six subtypes. Classification accuracy varied by machine learning classifier and the features used, ranging from 44.5% to 99.82%. The highest accuracy for infant needs’ cries was hunger and pain cries at 99.82% using a Gaussian mixture model (GMM) classifier with constant-Q cepstral coefficients features. For pathological cries, the highest accuracy was for detecting deafness (99.42% to 99.82%), using a genetic selection of Fuzzy Model and a GMM classifier. Conclusions Machine learning shows strong potential for accurately classifying infant cries and detecting pathologies. Future research should prioritize developing diverse cry datasets to improve model generalizability, evaluating performance in real-world settings, and integrating cry analysis with physiological signals to enhance diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助111采纳,获得10
9秒前
13秒前
水水水发布了新的文献求助10
17秒前
领导范儿应助水水水采纳,获得10
28秒前
34秒前
35秒前
111发布了新的文献求助10
40秒前
46秒前
111完成签到,获得积分10
47秒前
英俊的铭应助Re采纳,获得10
50秒前
昵称完成签到,获得积分0
1分钟前
Komorebi完成签到 ,获得积分10
1分钟前
1分钟前
魔幻的芳完成签到,获得积分10
1分钟前
1分钟前
1分钟前
水水水发布了新的文献求助10
1分钟前
火星上的宝马完成签到,获得积分10
1分钟前
悲凉的忆南完成签到,获得积分10
1分钟前
Re发布了新的文献求助10
1分钟前
科研通AI6应助纸鹤采纳,获得10
1分钟前
陈旧完成签到,获得积分10
1分钟前
sarah完成签到,获得积分10
1分钟前
欣欣子完成签到,获得积分10
1分钟前
sunstar完成签到,获得积分10
1分钟前
yxl完成签到,获得积分10
1分钟前
可耐的盈完成签到,获得积分10
1分钟前
绿毛水怪完成签到,获得积分10
1分钟前
lsc完成签到,获得积分10
1分钟前
小fei完成签到,获得积分10
1分钟前
麻辣薯条完成签到,获得积分10
1分钟前
1分钟前
时尚身影完成签到,获得积分10
2分钟前
流苏完成签到,获得积分0
2分钟前
2分钟前
2分钟前
今后应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
流苏2完成签到,获得积分10
2分钟前
dawnfrf完成签到,获得积分10
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644645
求助须知:如何正确求助?哪些是违规求助? 4764877
关于积分的说明 15025423
捐赠科研通 4803014
什么是DOI,文献DOI怎么找? 2567817
邀请新用户注册赠送积分活动 1525416
关于科研通互助平台的介绍 1484958