异质结
材料科学
光电子学
响应度
肖特基势垒
肖特基二极管
光电探测器
钝化
制作
半导体
比探测率
原位
宽带
吸收率
极化(电化学)
可见光谱
纳米技术
耗尽区
电极
红外线的
范德瓦尔斯力
紫外线
作者
Shaoqiu Ke,Shaoqiu Ke,Xiaojia Xu,Jinyu Kang,Shengyan Zu,Mengyu Ge,Xiaohuan Wei,Zikai Lin,Xindi Zhang,Zhiwei Huang,Guanzhou Liu,Jin-Rong Zhou,Shao-Ying Ke,Shao-Ying Ke,Shaoqiu Ke,Xiaojia Xu,Jinyu Kang,Shengyan Zu,Mengyu Ge,Xiaohuan Wei
标识
DOI:10.1002/lpor.202502106
摘要
ABSTRACT Mixed‐dimensional van der Waals heterostructures comprising 2D transition metal dichalcogenides (TMDs) and 3D semiconductors show great promise for short‐wave infrared (SWIR) photodetection. In this study, breaking through the limitations of traditional thin‐film transfer processes, the in situ fabrication of WSe 2 /W/Ge back‐to‐back dual Schottky heterojunctions on Ge substrates is successfully achieved via a W passivation barrier‐assisted in situ selenization technique, which effectively suppresses the formation of GeSe by‐products. An 8 × 8 photodetector array is fabricated, exhibiting significant photoresponse in the broad spectral range of 532–2200 nm. Specifically, the responsivity () and specific detectivity () at 1550 nm are as high as 2.77 A/W and 1.55 × 10 12 Jones, respectively. The device exhibits a unique double‐exponential decay characteristic, arising from synergistic fast and slow carrier transport in the back‐to‐back dual Schottky structure. The mechanism constitutes the physical origin of the high‐speed photoresponse in the device, achieving response speeds of 1.70/1.67 and 0.19/0.88 µs, along with 3 dB cutoff frequencies () of 198 and 385 kHz, respectively. The device enables high‐resolution SWIR polarization imaging and high‐speed communication, offering a novel architecture for next‐generation SWIR photodetectors.
科研通智能强力驱动
Strongly Powered by AbleSci AI