Application of high-resolution telemetered sensor technology to develop conceptual models of catchment hydrogeological processes

环境科学 水文地质学 水资源管理 流域 水质 水文学(农业) 地下水 污染 农业 环境资源管理 工程类 地理 生态学 生物 考古 岩土工程 地图学
作者
Richard J. Cooper,Kevin M. Hiscock,Andrew Lovett,Stephen J. Dugdale,Gisela Sünnenberg,N. Garrard,Faye N. Outram,Zanist Q. Hama-Aziz,Lister Noble,Melinda Lewis
出处
期刊:Journal of hydrology [Elsevier BV]
卷期号:1: 100007-100007 被引量:12
标识
DOI:10.1016/j.hydroa.2018.100007
摘要

Mitigating agricultural water pollution requires changes in land management practices and the implementation of on-farm measures to tackle the principal reasons for water quality failure. However, a paucity of robust empirical evidence on the hydrological functioning of river catchments can be a major constraint on the design of effective pollution mitigation strategies at the catchment-scale. In this regard, in 2010 the UK government established the Demonstration Test Catchment (DTC) initiative to evaluate the extent to which on-farm mitigation measures can cost-effectively reduce the impacts of agricultural water pollution on river ecology while maintaining food production capacity. A central component of the DTC platform has been the establishment of a comprehensive network of automated, web-based sensor technologies to generate high-temporal resolution empirical datasets of surface water, soil water, groundwater and meteorological parameters. In this paper, we demonstrate how this high-resolution telemetry can be used to improve our understanding of hydrological functioning and the dynamics of pollutant mobilisation and transport under a range of hydrometerological and hydrogeological conditions. Furthermore, we demonstrate how these data can be used to develop conceptual models of catchment hydrogeological processes and consider the implications of variable hydrological functioning on the performance of land management changes aimed at reducing agricultural water pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
KinKrit完成签到 ,获得积分10
1秒前
1秒前
liuliu完成签到,获得积分10
2秒前
充电宝应助吴世勋采纳,获得10
3秒前
4秒前
田様应助DQ8733采纳,获得10
4秒前
无花果应助BIUBIU采纳,获得10
4秒前
jzmulyl完成签到,获得积分10
5秒前
壹肆伍应助机灵鞋垫采纳,获得10
6秒前
6秒前
My发布了新的文献求助10
6秒前
懵懂的采梦应助sophia采纳,获得10
7秒前
深情安青应助研友_851KE8采纳,获得10
7秒前
yueqi完成签到 ,获得积分10
8秒前
大猪完成签到,获得积分10
8秒前
搞怪人杰完成签到,获得积分10
9秒前
吴世勋完成签到,获得积分10
10秒前
10秒前
爆米花应助WeiG采纳,获得10
11秒前
脑洞疼应助东风压倒西风采纳,获得10
12秒前
13秒前
不安的元霜完成签到,获得积分10
13秒前
逢春完成签到,获得积分10
14秒前
科研通AI5应助自然的幻雪采纳,获得10
14秒前
CodeCraft应助乘风破浪采纳,获得10
15秒前
15秒前
glow完成签到,获得积分10
15秒前
aldblm完成签到,获得积分10
16秒前
16秒前
仁爱的咖啡完成签到,获得积分20
16秒前
16秒前
16秒前
17秒前
17秒前
18秒前
顺利的绿真完成签到,获得积分10
19秒前
20秒前
无花果应助shicp采纳,获得10
20秒前
Flute关注了科研通微信公众号
21秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835165
求助须知:如何正确求助?哪些是违规求助? 3377669
关于积分的说明 10499742
捐赠科研通 3097244
什么是DOI,文献DOI怎么找? 1705614
邀请新用户注册赠送积分活动 820629
科研通“疑难数据库(出版商)”最低求助积分说明 772149