Understanding the Interplay between Self-Assembling Peptides and Solution Ions for Tunable Protein Nanoparticle Formation

纳米颗粒 离子 化学 自组装 纳米技术 化学物理 材料科学 生物化学 有机化学
作者
Bhuvana K. Shanbhag,Chang Liu,Victoria S. Haritos,Lizhong He
出处
期刊:ACS Nano [American Chemical Society]
卷期号:12 (7): 6956-6967 被引量:22
标识
DOI:10.1021/acsnano.8b02381
摘要

Protein-based nanomaterials are gaining importance in biomedical and biosensor applications where tunability of the protein particle size is highly desirable. Rationally designed proteins and peptides offer control over molecular interactions between monomeric protein units to modulate their self-assembly and thus particle formation. Here, using an example enzyme–peptide system produced as a single construct by bacterial expression, we explore how solution conditions affect the formation and size of protein nanoparticles. We found two independent routes to particle formation, one facilitated by charge interactions between protein–peptide and peptide–peptide exemplified by pH change or the presence of NO3– or NH4+ and the second route via metal-ion coordination (e.g., Mg2+) within peptides. We further demonstrate that the two independent factors of pH and Mg2+ ions can be combined to regulate nanoparticle size. Charge interactions between protein–peptide monomers play a key role in either promoting or suppressing protein assembly; the intermolecular contact points within protein–peptide monomers involved in nanoparticle formation were identified by chemical cross-linking mass spectrometry. Importantly, the protein nanoparticles retain their catalytic activities, suggesting that their native structures are unaffected. Once formed, protein nanoparticles remain stable over long periods of storage or with changed solution conditions. Nevertheless, formation of nanoparticles is also reversible—they can be disassembled by desalting the buffer to remove complexing agents (e.g., Mg2+). This study defines the factors controlling formation of protein nanoparticles driven by self-assembly peptides and an understanding of complex ion–peptide interactions involved within, offering a convenient approach to tailor protein nanoparticles without changing amino acid sequence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助虚心的真采纳,获得10
1秒前
2秒前
小张完成签到,获得积分10
3秒前
cds发布了新的文献求助10
4秒前
Akim应助史育川采纳,获得10
5秒前
我是老大应助yu采纳,获得10
5秒前
5秒前
淡淡的从雪完成签到 ,获得积分10
5秒前
电解水完成签到,获得积分20
7秒前
月半发布了新的文献求助10
7秒前
段段完成签到,获得积分10
8秒前
Lucas应助闪闪航空采纳,获得10
8秒前
医路潜行完成签到,获得积分20
9秒前
9秒前
10秒前
田様应助HAN采纳,获得10
11秒前
12秒前
兽医12138完成签到 ,获得积分10
12秒前
13秒前
13秒前
雪白的映易完成签到,获得积分10
14秒前
虚幻念寒发布了新的文献求助10
15秒前
王美霞完成签到,获得积分10
16秒前
16秒前
敏感的曼岚完成签到 ,获得积分20
17秒前
xuan应助西海岸的风采纳,获得10
17秒前
汉堡包应助kunkunyu采纳,获得10
18秒前
xuan发布了新的文献求助30
18秒前
落枫完成签到,获得积分10
19秒前
闪闪航空发布了新的文献求助10
20秒前
李阿吉完成签到,获得积分10
21秒前
zzz完成签到,获得积分20
22秒前
ww完成签到,获得积分10
22秒前
科研牛马关注了科研通微信公众号
22秒前
科研通AI5应助李晓龙采纳,获得10
23秒前
24秒前
小巧的风华完成签到,获得积分20
24秒前
24秒前
jjh发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5182646
求助须知:如何正确求助?哪些是违规求助? 4369259
关于积分的说明 13605407
捐赠科研通 4220860
什么是DOI,文献DOI怎么找? 2314896
邀请新用户注册赠送积分活动 1313660
关于科研通互助平台的介绍 1262370