Multimodal Convolutional Neural Networks to Detect Fetal Compromise During Labor and Delivery

妥协 卷积神经网络 计算机科学 人工智能 机器学习 社会科学 社会学
作者
Alessio Petrozziello,Christopher W.G. Redman,Aris T. Papageorghiou,Ivan Jordanov,Antoniya Georgieva
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 112026-112036 被引量:90
标识
DOI:10.1109/access.2019.2933368
摘要

The gold standard to assess whether a baby is at risk of oxygen deprivation during childbirth, is monitoring continuously the fetal heart rate with cardiotocography (CTG). The aim is to identify babies that could benefit from an emergency operative delivery (e.g., Cesarean section), in order to prevent death or permanent brain injury. The long, dynamic and complex CTG patterns are poorly understood and known to have high false positive and false negative rates. Visual interpretation by clinicians is challenging and reliable accurate fetal monitoring in labor remains an enormous unmet medical need. In this work, we applied deep learning methods to achieve data-driven automated CTG evaluation. Multimodal Convolutional Neural Network (MCNN) and Stacked MCNN models were used to analyze the largest available database of routinely collected CTG and linked clinical data (comprising more than 35000 births). We also assessed in detail the impact of the signal quality on the MCNN performance. On a large hold-out testing set from Oxford (n= 4429 births), MCNN improved the prediction of cord acidemia at birth when compared with Clinical Practice and previous computerized approaches. On two external datasets, MCNN demonstrated better performance compared to current feature extraction-based methods. Our group is the first to apply deep learning for the analysis of CTG. We conclude that MCNN hold potential for the prediction of cord acidemia at birth and further work is warranted. Despite the advances, our deep learning models are currently not suitable for the detection of severe fetal injury in the absence of cord acidemia - a heterogeneous, small, and poorly understood group. We suggest that the most promising way forward are hybrid approaches to CTG interpretation in labor, in which different diagnostic models can estimate the risk for different types of fetal compromise, incorporating clinical knowledge with data-driven analyses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
万能图书馆应助M95采纳,获得10
1秒前
yyy发布了新的文献求助10
1秒前
好名字发布了新的文献求助10
1秒前
陌回发布了新的文献求助10
1秒前
烟花应助SAMSUNG采纳,获得10
1秒前
Vivian发布了新的文献求助10
1秒前
yooloo发布了新的文献求助10
1秒前
Aulalala完成签到,获得积分10
1秒前
1秒前
小蘑菇应助顾北采纳,获得10
2秒前
笨笨凡之发布了新的文献求助30
2秒前
千澈完成签到,获得积分10
2秒前
chestnut完成签到,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
xiaxia应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
4秒前
4秒前
xiaxia应助科研通管家采纳,获得10
4秒前
ttm完成签到,获得积分10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
从容的念真完成签到,获得积分10
4秒前
今后应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
4秒前
Jared应助科研通管家采纳,获得10
4秒前
4秒前
英俊的铭应助科研通管家采纳,获得20
4秒前
55155255应助科研通管家采纳,获得20
4秒前
浮游应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582167
求助须知:如何正确求助?哪些是违规求助? 4666373
关于积分的说明 14762023
捐赠科研通 4608313
什么是DOI,文献DOI怎么找? 2528621
邀请新用户注册赠送积分活动 1497921
关于科研通互助平台的介绍 1466671