Rapid analysis of the Tanreqing injection by near-infrared spectroscopy combined with least squares support vector machine and Gaussian process modeling techniques

偏最小二乘回归 均方误差 校准 支持向量机 数学 化学计量学 绿原酸 最小二乘支持向量机 生物系统 化学 人工智能 计算机科学 统计 色谱法 生物
作者
Wenlong Li,Xu Yan,Jianchao Pan,Shaoyong Liu,Dongsheng Xue,Haibin Qu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:218: 271-280 被引量:33
标识
DOI:10.1016/j.saa.2019.03.110
摘要

Near-infrared spectroscopy (NIRS) combined with chemometrics was used to analyze the main active ingredients including chlorogenic acid, caffeic acid, luteoloside, baicalin, ursodesoxycholic acid, and chenodeoxycholic acid in the Tanreqing injection. In this paper, first, two hundred samples collected in the product line were divided into the calibration set and prediction set, and the reference values were determined by the High Performance Liquid Chromatography- Diode Array Detector/Evaporative Light Scattering Detector (HPLC-DAD/ELSD) method. Partial least squares (PLS) analysis was implemented as a linear method for models calibrated with different preprocessing means. Wavelet transformation (WT) was introduced as a variable selection technique by means of multiscale decomposition, and wavelet coefficients were employed as the input for modeling. Furthermore, two nonlinear approaches, least squares support vector machine (LS-SVM) and Gaussian process (GP), were applied to exploit the complicated relationship between the spectra and active ingredients. The optimal models for each ingredient were obtained by LS-SVM and GP methods. The performance of the final models was evaluated by the root mean square error of calibration (RMSEC), root mean square error of cross-validation (RMSECV), root mean square error of prediction (RMSEP) and correlation coefficient (R). All of the models in the paper give a good calibration ability with an R value above 0.92, and the prediction ability is also satisfactory, with an R value higher than 0.85. The overall results demonstrate that nonlinear models are more stable and predictable than linear ones, and they will be more suitable for the CHM system when high accuracy analysis is required. It can be concluded that NIRS with the LS-SVM and GP modeling methods is promising for the implementation of process analytical technology (PAT) in the pharmaceutical industry of Chinese herbal injections (CHIs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
djf完成签到,获得积分10
刚刚
刚刚
FashionBoy应助迪丽盐巴采纳,获得10
1秒前
chen202303应助明芬采纳,获得10
1秒前
飞翔的霸天哥应助大熊采纳,获得30
1秒前
2秒前
Jason完成签到 ,获得积分10
2秒前
852应助瑜軒采纳,获得10
3秒前
希望天下0贩的0应助xxm采纳,获得10
3秒前
4秒前
苏澄完成签到,获得积分10
5秒前
小鱼儿发布了新的文献求助10
5秒前
852应助成就灭龙采纳,获得10
6秒前
Just97完成签到,获得积分10
6秒前
张正发布了新的文献求助10
6秒前
一元发布了新的文献求助30
7秒前
吴新完成签到 ,获得积分10
8秒前
ALOHA发布了新的文献求助10
8秒前
9秒前
9秒前
演员完成签到,获得积分10
9秒前
Hello应助橙汁采纳,获得10
10秒前
10秒前
11秒前
12秒前
豆豆完成签到,获得积分10
12秒前
迪丽盐巴发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
幻__发布了新的文献求助10
16秒前
yee完成签到 ,获得积分10
16秒前
17秒前
皇帝的床帘完成签到,获得积分10
18秒前
浮游应助Oz采纳,获得10
18秒前
迪丽盐巴完成签到,获得积分10
18秒前
20秒前
寻悦发布了新的文献求助10
21秒前
Maestro_S应助明芬采纳,获得10
21秒前
无花果应助Arrebol采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306813
求助须知:如何正确求助?哪些是违规求助? 4452593
关于积分的说明 13854857
捐赠科研通 4340137
什么是DOI,文献DOI怎么找? 2382958
邀请新用户注册赠送积分活动 1377840
关于科研通互助平台的介绍 1345621