Protein Interaction Domains and Post-Translational Modifications: Structural Features and Drug Discovery Applications

计算生物学 药物发现 拟肽 蛋白质-蛋白质相互作用 蛋白质数据库 蛋白质结构 蛋白质数据库 蛋白质结构域 小分子 化学 生物信息学 生物 生物化学 基因
作者
Marian Vincenzi,Flavia Anna Mercurio,Marilisa Leone
出处
期刊:Current Medicinal Chemistry [Bentham Science Publishers]
卷期号:27 (37): 6306-6355 被引量:7
标识
DOI:10.2174/0929867326666190620101637
摘要

Many pathways regarding healthy cells and/or linked to diseases onset and progression depend on large assemblies including multi-protein complexes. Protein-protein interactions may occur through a vast array of modules known as Protein Interaction Domains (PIDs).This review concerns with PIDs recognizing post-translationally modified peptide sequences and intends to provide the scientific community with state of art knowledge on their 3D structures, binding topologies and potential applications in the drug discovery field.Several databases, such as the Pfam (Protein family), the SMART (Simple Modular Architecture Research Tool) and the PDB (Protein Data Bank), were searched to look for different domain families and gain structural information on protein complexes in which particular PIDs are involved. Recent literature on PIDs and related drug discovery campaigns were retrieved through Pubmed and analyzed.PIDs are rather versatile as concerned with their binding preferences. Many of them recognize specifically only determined amino acid stretches with post-translational modifications, a few others are able to interact with several post-translationally modified sequences or with unmodified ones. Many PIDs can be linked to different diseases including cancer. The tremendous amount of available structural data led to the structure-based design of several molecules targeting protein-protein interactions mediated by PIDs, including peptides, peptidomimetics and small compounds. More studies are needed to fully role out, among different families, PIDs that can be considered reliable therapeutic targets, however, attacking PIDs rather than catalytic domains of a particular protein may represent a route to obtain selective inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助STEAD采纳,获得10
1秒前
乐乐乐乐乐乐应助言小采纳,获得50
2秒前
3秒前
迅速千愁完成签到 ,获得积分10
3秒前
5秒前
5秒前
平凡之路发布了新的文献求助10
5秒前
胡梅13发布了新的文献求助10
6秒前
8秒前
手拿把掐发布了新的文献求助30
8秒前
星辰大海应助balelalala采纳,获得10
11秒前
13秒前
科目三应助zeng采纳,获得10
14秒前
15秒前
HEAUBOOK应助科研通管家采纳,获得10
18秒前
HEAUBOOK应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
19秒前
19秒前
rtlnk应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
手拿把掐完成签到,获得积分10
19秒前
19秒前
Hello应助科研通管家采纳,获得10
19秒前
小易完成签到,获得积分10
20秒前
科目三应助英俊白莲采纳,获得10
21秒前
胡梅13完成签到,获得积分10
24秒前
24秒前
喜宝完成签到 ,获得积分10
25秒前
26秒前
滴滴完成签到 ,获得积分10
27秒前
dyyisash完成签到 ,获得积分10
28秒前
zeng发布了新的文献求助10
28秒前
yiqihunhun发布了新的文献求助10
29秒前
佳妮发布了新的文献求助10
30秒前
孟冬发布了新的文献求助10
31秒前
zjp完成签到,获得积分10
33秒前
33秒前
上官若男应助失眠的凡阳采纳,获得10
34秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808948
求助须知:如何正确求助?哪些是违规求助? 3353666
关于积分的说明 10366348
捐赠科研通 3069917
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766320