ON MUTUALLY UNBIASED BASES

相互无偏基 量子纠缠 数学 离散数学 希尔伯特空间 量子位元 量子 组合数学 纯数学 量子力学 物理
作者
Thomas Durt,Berthold‐Georg Englert,Ingemar Bengtsson,Karol Życzkowski
出处
期刊:International Journal of Quantum Information [World Scientific]
卷期号:08 (04): 535-640 被引量:661
标识
DOI:10.1142/s0219749910006502
摘要

Mutually unbiased bases for quantum degrees of freedom are central to all theoretical investigations and practical exploitations of complementary properties. Much is known about mutually unbiased bases, but there are also a fair number of important questions that have not been answered in full as yet. In particular, one can find maximal sets of N + 1 mutually unbiased bases in Hilbert spaces of prime-power dimension N = p M , with p prime and M a positive integer, and there is a continuum of mutually unbiased bases for a continuous degree of freedom, such as motion along a line. But not a single example of a maximal set is known if the dimension is another composite number (N = 6, 10, 12,…). In this review, we present a unified approach in which the basis states are labeled by numbers 0, 1, 2, …, N - 1 that are both elements of a Galois field and ordinary integers. This dual nature permits a compact systematic construction of maximal sets of mutually unbiased bases when they are known to exist but throws no light on the open existence problem in other cases. We show how to use the thus constructed mutually unbiased bases in quantum-informatics applications, including dense coding, teleportation, entanglement swapping, covariant cloning, and state tomography, all of which rely on an explicit set of maximally entangled states (generalizations of the familiar two–q-bit Bell states) that are related to the mutually unbiased bases. There is a link to the mathematics of finite affine planes. We also exploit the one-to-one correspondence between unbiased bases and the complex Hadamard matrices that turn the bases into each other. The ultimate hope, not yet fulfilled, is that open questions about mutually unbiased bases can be related to open questions about Hadamard matrices or affine planes, in particular the notorious existence problem for dimensions that are not a power of a prime. The Hadamard-matrix approach is instrumental in the very recent advance, surveyed here, of our understanding of the N = 6 situation. All evidence indicates that a maximal set of seven mutually unbiased bases does not exist — one can find no more than three pairwise unbiased bases — although there is currently no clear-cut demonstration of the case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西北孤傲的狼完成签到,获得积分10
1秒前
1sss发布了新的文献求助10
1秒前
科目三应助谨慎雪冥采纳,获得20
2秒前
华仔应助最专业采纳,获得10
3秒前
超级小喵总完成签到,获得积分10
3秒前
SAY发布了新的文献求助10
4秒前
wzq完成签到 ,获得积分20
5秒前
7秒前
123456777完成签到 ,获得积分10
7秒前
10秒前
10秒前
dongdongyao完成签到,获得积分10
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
飘逸的山柏完成签到 ,获得积分10
13秒前
Caleb完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
爆米花应助负责的妙松采纳,获得10
17秒前
18秒前
Caleb发布了新的文献求助10
20秒前
20秒前
jingjing发布了新的文献求助10
20秒前
20秒前
22秒前
22秒前
22秒前
晏旭完成签到,获得积分10
23秒前
nuannuan完成签到 ,获得积分10
23秒前
传奇3应助Debra采纳,获得10
23秒前
wyh完成签到 ,获得积分10
24秒前
jimi完成签到,获得积分10
24秒前
577发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
25秒前
时舒完成签到 ,获得积分10
25秒前
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4224951
求助须知:如何正确求助?哪些是违规求助? 3758317
关于积分的说明 11813581
捐赠科研通 3419885
什么是DOI,文献DOI怎么找? 1876935
邀请新用户注册赠送积分活动 930363
科研通“疑难数据库(出版商)”最低求助积分说明 838582