Semantic segmentation model of cotton roots in-situ image based on attention mechanism

分割 计算机科学 人工智能 像素 卷积(计算机科学) 图像分割 精确性和召回率 模式识别(心理学) 词根(语言学) 计算机视觉 数学 人工神经网络 语言学 哲学
作者
Jia Kang,Liantao Liu,Fucheng Zhang,Chen Shen,Nan Wang,Limin Shao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:189: 106370-106370 被引量:75
标识
DOI:10.1016/j.compag.2021.106370
摘要

Abstract The growth and distribution of root system in the soil has an important influence on the growth of plants and is one of the important factors affecting crop production. However, the root system of plants is located in the dark and closed soil. Even if we can obtain high-definition root image from the complex soils, the interference of the soil particles on root system and the small difference of color between them will pose challenges for further root segmentation. In this experiment, the cotton mature root system is used as the research object. Based on the introduction of sub-pixel convolution DeepLabv3+ semantic segmentation model, we further added the attention mechanism to the model, assigning more weight to the pixel points of fine roots and their root hairs, and designed a semantic segmentation model of cotton roots in-situ image based on the attention mechanism. The experimental results show that the model has higher segmentation accuracy and operational efficiency than only introduces sub-pixel convolution DeepLabv3+ model, U-Net model and SegNet model. The precision value, recall value and F1-score are 0.9971, 0.9984 and 0.9937 respectively, and the IoU value of 161 untrained root image segmentation tasks was 0.9875. At the same time, we also performed segmentation experiments on the early cotton root images. The results show that the DeepLabv3+ model which only introduces sub-pixel convolution, U-Net model and SegNet model have poor segmentation effects. The semantic segmentation model based on attention mechanism proposed in this paper can be segmented accurately. The above results show that the proposed model can distinguish the cotton root system from the complex soil background accurately and has good segmentation effect. It can realize the accurate segmentation of root image in early and mature period in the process of cotton root growth, and provide important theoretical value and practical application reference for deep learning in plant root segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单纯芹菜完成签到,获得积分10
刚刚
刚刚
WAMK发布了新的文献求助10
1秒前
蚂蚱别跳完成签到,获得积分10
1秒前
步行街车神ahua完成签到,获得积分10
1秒前
无水乙醚完成签到,获得积分10
1秒前
2秒前
tt发布了新的文献求助10
3秒前
小巧的白竹完成签到,获得积分10
3秒前
小张z完成签到,获得积分10
3秒前
yy完成签到,获得积分10
3秒前
奥斯卡完成签到,获得积分0
3秒前
4秒前
cxy发布了新的文献求助10
5秒前
青鱼完成签到,获得积分10
5秒前
5秒前
FF完成签到,获得积分10
7秒前
猫头咪子完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
8秒前
在水一方应助蓝天黄土采纳,获得10
8秒前
菠萝吹雪完成签到 ,获得积分10
8秒前
李健的小迷弟应助猫小咪采纳,获得10
9秒前
sooo完成签到,获得积分10
10秒前
Buduan完成签到,获得积分10
11秒前
whitebird完成签到,获得积分10
12秒前
专注忆曼完成签到,获得积分10
14秒前
fannie完成签到,获得积分10
15秒前
球球完成签到,获得积分10
16秒前
Sene完成签到,获得积分10
16秒前
16秒前
17秒前
会飞的生菜完成签到,获得积分10
17秒前
无花果应助MM采纳,获得10
17秒前
18秒前
手帕很忙完成签到,获得积分10
18秒前
老迟的新瑶完成签到 ,获得积分10
18秒前
李薇完成签到,获得积分10
19秒前
xuan完成签到,获得积分10
19秒前
归于晏完成签到,获得积分10
19秒前
ira发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477002
求助须知:如何正确求助?哪些是违规求助? 4578866
关于积分的说明 14364749
捐赠科研通 4506758
什么是DOI,文献DOI怎么找? 2469528
邀请新用户注册赠送积分活动 1456769
关于科研通互助平台的介绍 1430806