卡斯普
计算机科学
人工神经网络
折叠(DSP实现)
序列(生物学)
蛋白质折叠
蛋白质结构预测
计算生物学
深度学习
蛋白质结构
人工智能
机器学习
化学
生物
工程类
生物化学
电气工程
作者
Minkyung Baek,Frank DiMaio,Ivan Anishchenko,Justas Dauparas,Sergey Ovchinnikov,Gyu Rie Lee,Jue Wang,Qian Cong,Lisa N. Kinch,R. Dustin Schaeffer,Claudia Millán,Hahnbeom Park,Carson Adams,Caleb R. Glassman,Andy DeGiovanni,J.H. Pereira,Andria V. Rodrigues,Alberdina A. van Dijk,Ana C. Ebrecht,Diederik J. Opperman
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2021-07-15
卷期号:373 (6557): 871-876
被引量:5059
标识
DOI:10.1126/science.abj8754
摘要
Deep learning takes on protein folding In 1972, Anfinsen won a Nobel prize for demonstrating a connection between a protein’s amino acid sequence and its three-dimensional structure. Since 1994, scientists have competed in the biannual Critical Assessment of Structure Prediction (CASP) protein-folding challenge. Deep learning methods took center stage at CASP14, with DeepMind’s Alphafold2 achieving remarkable accuracy. Baek et al . explored network architectures based on the DeepMind framework. They used a three-track network to process sequence, distance, and coordinate information simultaneously and achieved accuracies approaching those of DeepMind. The method, RoseTTA fold, can solve challenging x-ray crystallography and cryo–electron microscopy modeling problems and generate accurate models of protein-protein complexes. —VV
科研通智能强力驱动
Strongly Powered by AbleSci AI