Machine learning-based prediction of invisible intraprostatic prostate cancer lesions on 68 Ga-PSMA-11 PET/CT in patients with primary prostate cancer

前列腺癌 医学 前列腺 接收机工作特性 核医学 癌症 转移 放射科 内科学
作者
Zhilong Yi,Siqi Hu,Xiaofeng Lin,Qiong Zou,Min-Hong Zou,Zhanlei Zhang,Lei Xu,Ningyi Jiang,Yong Zhang
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:49 (5): 1523-1534 被引量:31
标识
DOI:10.1007/s00259-021-05631-6
摘要

68 Ga-PSMA PET/CT has high specificity and sensitivity for the detection of both intraprostatic tumor focal lesions and metastasis. However, approximately 10% of primary prostate cancer are invisible on PSMA-PET (exhibit no or minimal uptake). In this work, we investigated whether machine learning-based radiomics models derived from PSMA-PET images could predict invisible intraprostatic lesions on 68 Ga-PSMA-11 PET in patients with primary prostate cancer.In this retrospective study, patients with or without prostate cancer who underwent 68 Ga-PSMA PET/CT and presented negative on PSMA-PET image at either of two different institutions were included: institution 1 (between 2017 and 2020) for the training set and institution 2 (between 2019 and 2020) for the external test set. Three random forest (RF) models were built using selected features extracted from standard PET images, delayed PET images, and both standard and delayed PET images. Then, subsequent tenfold cross-validation was performed. In the test phase, the three RF models and PSA density (PSAD, cut-off value: 0.15 ng/ml/ml) were tested with the external test set. The area under the receiver operating characteristic curve (AUC) was calculated for the models and PSAD. The AUCs of the radiomics model and PSAD were compared.A total of 64 patients (39 with prostate cancer and 25 with benign prostate disease) were in the training set, and 36 (21 with prostate cancer and 15 with benign prostate disease) were in the test set. The average AUCs of the three RF models from tenfold cross-validation were 0.87 (95% CI: 0.72, 1.00), 0.86 (95% CI: 0.63, 1.00), and 0.91 (95% CI: 0.69, 1.00), respectively. In the test set, the AUCs of the three trained RF models and PSAD were 0.903 (95% CI: 0.830, 0.975), 0.856 (95% CI: 0.748, 0.964), 0.925 (95% CI:0.838, 1.00), and 0.662 (95% CI: 0.510, 0.813). The AUCs of the three radiomics models were higher than that of PSAD (0.903, 0.856, and 0.925 vs. 0.662, respectively; P = .007, P = .045, and P = .005, respectively).Random forest models developed by 68 Ga-PSMA-11 PET-based radiomics features were proven useful for accurate prediction of invisible intraprostatic lesion on 68 Ga-PSMA-11 PET in patients with primary prostate cancer and showed better diagnostic performance compared with PSAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助Tessa采纳,获得10
1秒前
今后应助花花采纳,获得10
2秒前
zzz发布了新的文献求助10
3秒前
欣慰白山发布了新的文献求助10
4秒前
汉堡包应助热情蓝采纳,获得10
4秒前
5秒前
gaint完成签到,获得积分10
7秒前
顾矜应助shepherd采纳,获得10
7秒前
7秒前
缓慢如南发布了新的文献求助20
8秒前
9秒前
summer发布了新的文献求助10
9秒前
10秒前
10秒前
JamesPei应助zhangshaoqi采纳,获得10
11秒前
CAOHOU应助ray采纳,获得10
11秒前
舍予有服完成签到,获得积分10
11秒前
lvsehx发布了新的文献求助10
14秒前
尊敬莺完成签到,获得积分10
14秒前
丘比特应助jia采纳,获得10
14秒前
万能图书馆应助小皇帝采纳,获得10
14秒前
wg发布了新的文献求助10
15秒前
Jenny发布了新的文献求助10
15秒前
17秒前
烟花应助lvsehx采纳,获得10
19秒前
20秒前
科研通AI5应助忐忑的舞蹈采纳,获得10
21秒前
22秒前
23秒前
23秒前
23秒前
zhangshaoqi发布了新的文献求助10
23秒前
发的风格完成签到,获得积分10
24秒前
orixero应助summer采纳,获得10
24秒前
热情蓝发布了新的文献求助10
25秒前
霅霅发布了新的文献求助10
25秒前
淡淡兔子完成签到 ,获得积分10
26秒前
Feng发布了新的文献求助10
26秒前
27秒前
penhao发布了新的文献求助30
27秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Ultra-Wide Bandgap Semiconductor Materials 600
Psychology Applied to Teaching 14th Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4090561
求助须知:如何正确求助?哪些是违规求助? 3629181
关于积分的说明 11505736
捐赠科研通 3341224
什么是DOI,文献DOI怎么找? 1836644
邀请新用户注册赠送积分活动 904578
科研通“疑难数据库(出版商)”最低求助积分说明 822421