亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based prediction of invisible intraprostatic prostate cancer lesions on 68 Ga-PSMA-11 PET/CT in patients with primary prostate cancer

前列腺癌 医学 前列腺 接收机工作特性 核医学 癌症 转移 放射科 内科学
作者
Zhilong Yi,Siqi Hu,Xiaofeng Lin,Qiong Zou,Min-Hong Zou,Zhanlei Zhang,Lei Xu,Ningyi Jiang,Yong Zhang
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:49 (5): 1523-1534 被引量:46
标识
DOI:10.1007/s00259-021-05631-6
摘要

68 Ga-PSMA PET/CT has high specificity and sensitivity for the detection of both intraprostatic tumor focal lesions and metastasis. However, approximately 10% of primary prostate cancer are invisible on PSMA-PET (exhibit no or minimal uptake). In this work, we investigated whether machine learning-based radiomics models derived from PSMA-PET images could predict invisible intraprostatic lesions on 68 Ga-PSMA-11 PET in patients with primary prostate cancer.In this retrospective study, patients with or without prostate cancer who underwent 68 Ga-PSMA PET/CT and presented negative on PSMA-PET image at either of two different institutions were included: institution 1 (between 2017 and 2020) for the training set and institution 2 (between 2019 and 2020) for the external test set. Three random forest (RF) models were built using selected features extracted from standard PET images, delayed PET images, and both standard and delayed PET images. Then, subsequent tenfold cross-validation was performed. In the test phase, the three RF models and PSA density (PSAD, cut-off value: 0.15 ng/ml/ml) were tested with the external test set. The area under the receiver operating characteristic curve (AUC) was calculated for the models and PSAD. The AUCs of the radiomics model and PSAD were compared.A total of 64 patients (39 with prostate cancer and 25 with benign prostate disease) were in the training set, and 36 (21 with prostate cancer and 15 with benign prostate disease) were in the test set. The average AUCs of the three RF models from tenfold cross-validation were 0.87 (95% CI: 0.72, 1.00), 0.86 (95% CI: 0.63, 1.00), and 0.91 (95% CI: 0.69, 1.00), respectively. In the test set, the AUCs of the three trained RF models and PSAD were 0.903 (95% CI: 0.830, 0.975), 0.856 (95% CI: 0.748, 0.964), 0.925 (95% CI:0.838, 1.00), and 0.662 (95% CI: 0.510, 0.813). The AUCs of the three radiomics models were higher than that of PSAD (0.903, 0.856, and 0.925 vs. 0.662, respectively; P = .007, P = .045, and P = .005, respectively).Random forest models developed by 68 Ga-PSMA-11 PET-based radiomics features were proven useful for accurate prediction of invisible intraprostatic lesion on 68 Ga-PSMA-11 PET in patients with primary prostate cancer and showed better diagnostic performance compared with PSAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111完成签到 ,获得积分10
刚刚
做科研的小施同学完成签到,获得积分10
3秒前
4秒前
思源应助超级野狼采纳,获得10
4秒前
leaf完成签到 ,获得积分0
5秒前
9秒前
NiceSunnyDay完成签到 ,获得积分10
10秒前
老年学术废物完成签到 ,获得积分10
11秒前
willlee完成签到 ,获得积分10
12秒前
飞鞚完成签到,获得积分10
13秒前
潘果果完成签到,获得积分10
13秒前
13秒前
18秒前
超级野狼发布了新的文献求助10
20秒前
飞鞚发布了新的文献求助10
22秒前
tt完成签到 ,获得积分10
25秒前
小王同学完成签到 ,获得积分10
27秒前
李四发布了新的文献求助60
29秒前
医研完成签到 ,获得积分10
29秒前
光亮的代真完成签到 ,获得积分10
33秒前
贝贝完成签到 ,获得积分10
39秒前
huyu完成签到 ,获得积分10
40秒前
Tendency完成签到 ,获得积分0
40秒前
量子星尘发布了新的文献求助10
40秒前
李同学完成签到,获得积分10
44秒前
46秒前
名子劝学完成签到 ,获得积分10
46秒前
梁海萍发布了新的文献求助10
51秒前
53秒前
leo0531完成签到 ,获得积分10
54秒前
bkagyin应助超级野狼采纳,获得10
57秒前
Chloe完成签到 ,获得积分0
58秒前
ZYK发布了新的文献求助10
58秒前
希音完成签到 ,获得积分10
1分钟前
1分钟前
搞什么搞完成签到,获得积分10
1分钟前
Augustines完成签到,获得积分10
1分钟前
欢呼宛秋完成签到,获得积分10
1分钟前
1分钟前
超级野狼发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754595
求助须知:如何正确求助?哪些是违规求助? 5487917
关于积分的说明 15380281
捐赠科研通 4893160
什么是DOI,文献DOI怎么找? 2631746
邀请新用户注册赠送积分活动 1579693
关于科研通互助平台的介绍 1535417