Machine learning-based prediction of invisible intraprostatic prostate cancer lesions on 68 Ga-PSMA-11 PET/CT in patients with primary prostate cancer

前列腺癌 医学 前列腺 接收机工作特性 核医学 癌症 转移 放射科 内科学
作者
Zhilong Yi,Siqi Hu,Xiaofeng Lin,Qiong Zou,Min-Hong Zou,Zhanlei Zhang,Lei Xu,Ningyi Jiang,Yong Zhang
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:49 (5): 1523-1534 被引量:33
标识
DOI:10.1007/s00259-021-05631-6
摘要

68 Ga-PSMA PET/CT has high specificity and sensitivity for the detection of both intraprostatic tumor focal lesions and metastasis. However, approximately 10% of primary prostate cancer are invisible on PSMA-PET (exhibit no or minimal uptake). In this work, we investigated whether machine learning-based radiomics models derived from PSMA-PET images could predict invisible intraprostatic lesions on 68 Ga-PSMA-11 PET in patients with primary prostate cancer.In this retrospective study, patients with or without prostate cancer who underwent 68 Ga-PSMA PET/CT and presented negative on PSMA-PET image at either of two different institutions were included: institution 1 (between 2017 and 2020) for the training set and institution 2 (between 2019 and 2020) for the external test set. Three random forest (RF) models were built using selected features extracted from standard PET images, delayed PET images, and both standard and delayed PET images. Then, subsequent tenfold cross-validation was performed. In the test phase, the three RF models and PSA density (PSAD, cut-off value: 0.15 ng/ml/ml) were tested with the external test set. The area under the receiver operating characteristic curve (AUC) was calculated for the models and PSAD. The AUCs of the radiomics model and PSAD were compared.A total of 64 patients (39 with prostate cancer and 25 with benign prostate disease) were in the training set, and 36 (21 with prostate cancer and 15 with benign prostate disease) were in the test set. The average AUCs of the three RF models from tenfold cross-validation were 0.87 (95% CI: 0.72, 1.00), 0.86 (95% CI: 0.63, 1.00), and 0.91 (95% CI: 0.69, 1.00), respectively. In the test set, the AUCs of the three trained RF models and PSAD were 0.903 (95% CI: 0.830, 0.975), 0.856 (95% CI: 0.748, 0.964), 0.925 (95% CI:0.838, 1.00), and 0.662 (95% CI: 0.510, 0.813). The AUCs of the three radiomics models were higher than that of PSAD (0.903, 0.856, and 0.925 vs. 0.662, respectively; P = .007, P = .045, and P = .005, respectively).Random forest models developed by 68 Ga-PSMA-11 PET-based radiomics features were proven useful for accurate prediction of invisible intraprostatic lesion on 68 Ga-PSMA-11 PET in patients with primary prostate cancer and showed better diagnostic performance compared with PSAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
虚幻怀莲完成签到,获得积分10
4秒前
Dong完成签到 ,获得积分10
4秒前
ran完成签到 ,获得积分10
4秒前
5秒前
龙眼完成签到,获得积分10
5秒前
芙瑞完成签到 ,获得积分10
6秒前
13秒前
ShellyMaya完成签到 ,获得积分10
16秒前
17秒前
夜神月发布了新的文献求助10
18秒前
stephenzh完成签到,获得积分10
20秒前
精明黄蜂完成签到 ,获得积分10
21秒前
机智的阿振完成签到,获得积分10
22秒前
吴律完成签到,获得积分10
23秒前
小潘完成签到 ,获得积分10
25秒前
哈哈完成签到 ,获得积分10
26秒前
one完成签到 ,获得积分10
31秒前
冷如松发布了新的文献求助20
31秒前
35秒前
CodeCraft应助科研通管家采纳,获得10
39秒前
布蓝图完成签到 ,获得积分10
40秒前
NexusExplorer应助科研通管家采纳,获得10
40秒前
40秒前
Summer完成签到 ,获得积分10
41秒前
鸭鸭完成签到 ,获得积分10
42秒前
冷如松完成签到,获得积分10
42秒前
43秒前
科研通AI5应助野椒搞科研采纳,获得30
43秒前
coolru完成签到,获得积分10
46秒前
fyy完成签到 ,获得积分10
47秒前
48秒前
朱光辉完成签到,获得积分10
50秒前
夜神月完成签到,获得积分10
52秒前
53秒前
LYH完成签到,获得积分10
53秒前
凡人完成签到 ,获得积分10
53秒前
xujingyi发布了新的文献求助10
57秒前
lemon完成签到 ,获得积分10
58秒前
kyt完成签到,获得积分10
59秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212420
求助须知:如何正确求助?哪些是违规求助? 4388601
关于积分的说明 13664165
捐赠科研通 4249133
什么是DOI,文献DOI怎么找? 2331417
邀请新用户注册赠送积分活动 1329109
关于科研通互助平台的介绍 1282517