A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior

计算机科学 动态时间归整 人工智能 荷载剖面图 人工神经网络 深度学习 波动性(金融) 机器学习 实时计算 计量经济学 工程类 经济 电气工程
作者
Wangwang Yang,Jing Shi,Shujian Li,Zhaofang Song,Zitong Zhang,Zexu Chen
出处
期刊:Applied Energy [Elsevier BV]
卷期号:307: 118197-118197 被引量:57
标识
DOI:10.1016/j.apenergy.2021.118197
摘要

With the growth of residential load and the popularity of intelligent devices, resident users have become important target customers for demand response (DR). However, due to the strong volatility of individual household load and the large difference in user’s behavior, the accuracy of residential load forecasting is generally low and the forecasting effect is unstable, which is not conductive to the implementation of DR. To improve the accuracy of residential load forecasting, this paper proposes a combined deep learning load forecasting model considering multi-time scale electricity consumption behavior of single household resident user to achieve high-accuracy and stable load forecasting. Aiming at the electricity consumption behavior, the multi-time scale similarity analysis is carried out. For the time scale of one year, Normalized Dynamic Time Warping (N-DTW) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) are used to analyze the significance of single user's long-term electricity consumption behavior. For the time scale of 7 days, behavior similarity is used to analyze the consistency of single user's short-term electricity consumption behavior. Then, Mutual Information (MI) and Principal Component Analysis (PCA) are used to select features and reduce dimensions of multi-dimensional weather influencing factors, so as to avoid the interference of irrelevant factors and improve the calculation speed. On this basis, combined with Back Propagation (BP) neural network, Extreme Gradient Boosting (XGBoost) and Long Short-Term Memory (LSTM) neural network, a combined deep learning network load forecasting model (Co-LSTM) is constructed by using multi-model and multi-variable method to achieve stable and high-accuracy load forecasting. Finally, based on the actual load data from the American Pecan Street Energy Project, the forecasting accuracy of the proposed model of resident user is evaluated. From the performance of load forecasting for 42 target users, the minimum, maximum and average Mean Arctangent Absolute Percentage Error (MAAPE) of Co-LSTM is 18.70%, 45.95% and 31.20% (the average MAAPE is 4.97% less than the traditional LSTM model) respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助王珺采纳,获得30
刚刚
我爱Chem发布了新的文献求助10
1秒前
sgt发布了新的文献求助10
2秒前
李健应助彳亍而行采纳,获得10
4秒前
唠叨的甜瓜完成签到,获得积分10
4秒前
哎呦喂喂完成签到,获得积分10
4秒前
racill发布了新的文献求助10
7秒前
9秒前
甜菜完成签到,获得积分10
10秒前
平常小兔子完成签到,获得积分10
12秒前
康阿蛋发布了新的文献求助10
13秒前
康轲完成签到,获得积分10
14秒前
ShawnLyu应助小写采纳,获得10
14秒前
刘雪晴完成签到 ,获得积分10
15秒前
秦时明月199588完成签到,获得积分10
17秒前
17秒前
李君然发布了新的文献求助10
18秒前
SYLH应助哎呦喂喂采纳,获得10
18秒前
18秒前
glassman完成签到,获得积分10
19秒前
Orange应助奋斗的元瑶采纳,获得10
19秒前
英姑应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
科研通AI5应助等光来采纳,获得30
20秒前
852应助科研通管家采纳,获得10
20秒前
Akim应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
大个应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
glassman发布了新的文献求助10
23秒前
wangdong完成签到,获得积分0
24秒前
小蘑菇应助平淡的77采纳,获得20
24秒前
kevin完成签到,获得积分10
27秒前
晴空万里发布了新的文献求助10
27秒前
actor2006完成签到,获得积分10
29秒前
华仔应助研友_nVWP2Z采纳,获得10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800680
求助须知:如何正确求助?哪些是违规求助? 3346007
关于积分的说明 10328247
捐赠科研通 3062514
什么是DOI,文献DOI怎么找? 1681009
邀请新用户注册赠送积分活动 807337
科研通“疑难数据库(出版商)”最低求助积分说明 763627