On learning disentangled representations for individual treatment effect estimation.

混淆 结果(博弈论) 正规化(语言学) 观察研究 计算机科学 任务(项目管理) 倾向得分匹配 机器学习 潜变量 人工智能 选型 代表(政治) 选择偏差 选择(遗传算法) 计量经济学 统计
作者
Jiebin Chu,Zhoujian Sun,Wei Dong,Jinlong Shi,Zhengxing Huang
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:124: 103940-103940
标识
DOI:10.1016/j.jbi.2021.103940
摘要

Estimating the individualized treatment effect (ITE) from observational data is a challenging task due to selection bias, which results from the distributional discrepancy between different treatment groups caused by the dependence between features and assigned treatments. This dependence is induced by the factors related to the treatment assignment. We hypothesize that features consist of three types of latent factors: outcome-specific factors, treatment-specific factors and confounders. Then, we aim to reduce the influence of treatment-related factors, i.e., treatment-specific factors and confounders, on outcome prediction to mitigate the effects of selection bias.We present a novel representation learning model in which both the main task of outcome prediction and the auxiliary task of classifying the treatment assignment are used to learn the outcome-oriented and treatment-oriented latent representations, respectively. However, since the confounders are related to both treatment assignment and outcome, it is still contained in the representations. To further reduce influence of the confounders contained in both representations, individualized orthogonal regularization is incorporated into the proposed model. The orthogonal regularization forces the outcome-oriented and treatment-oriented latent representations of an individual to be vertical in the inner product space, meaning they are orthogonal with each other, and the common information of confounder is reduced. Such that the ITE can be estimated more precisely without the effects of selection bias.We evaluate our proposed model on a semi-simulated dataset and a real-world dataset. The experimental results demonstrate that the proposed model achieves competitive or better performance compared with the performances of the state-of-the-art models.The proposed method is well performed on ITE estimation with the ability to reduce selection bias thoroughly by incorporating an auxiliary task and adopting orthogonal regularization to disentangle the latent factors.This paper offers a novel method of reducing selection bias in estimating the ITE from observational data by disentangled representation learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助Maydalian采纳,获得10
2秒前
对苏完成签到,获得积分10
2秒前
LBJ完成签到,获得积分10
3秒前
4秒前
俊逸十八完成签到 ,获得积分10
4秒前
lucky完成签到,获得积分10
4秒前
4秒前
地表飞猪发布了新的文献求助10
6秒前
双勾玉发布了新的文献求助10
6秒前
6秒前
坚定惊蛰发布了新的文献求助10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
所所应助子车万仇采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
不安豁发布了新的文献求助10
9秒前
激情的一斩完成签到,获得积分20
9秒前
Ava应助sdl采纳,获得10
11秒前
79发布了新的文献求助10
11秒前
12秒前
1111完成签到 ,获得积分10
13秒前
14秒前
甜甜秋完成签到 ,获得积分10
15秒前
xqq完成签到,获得积分10
15秒前
李健应助激情的一斩采纳,获得10
15秒前
别摆烂了完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
Jasper应助kele采纳,获得10
17秒前
宋佳顺发布了新的文献求助20
17秒前
阿拉蕾发布了新的文献求助10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796582
求助须知:如何正确求助?哪些是违规求助? 3341785
关于积分的说明 10307798
捐赠科研通 3058389
什么是DOI,文献DOI怎么找? 1678185
邀请新用户注册赠送积分活动 805918
科研通“疑难数据库(出版商)”最低求助积分说明 762841