Simulation-based passenger evacuation optimization in metro stations considering multi-objectives

地铁站 运输工程 遗传算法 体积热力学 分类 地铁站 工程类 模拟 计算机科学 量子力学 机器学习 物理 程序设计语言
作者
Kai Guo,Limao Zhang
出处
期刊:Automation in Construction [Elsevier]
卷期号:133: 104010-104010 被引量:62
标识
DOI:10.1016/j.autcon.2021.104010
摘要

Evacuation is critical for safety management due to the highly overcrowded passengers in the metro stations. A simulation-based approach integrating Random Forest (RF) and Non-dominated Sorting Genetic Algorithm III (NSGA-III) is proposed to perform the evacuation evaluation and optimization at metro stations. A 3D model of the metro station is built to simulate the dynamic process of passenger evacuation in metro stations. A framework consisting of 9 influential factors and 3 objectives is developed to model the input-output relationship in passenger evacuation. An RF-based meta-model is used to construct the relationship between influential factors and objectives. At last, NSGA-III is applied to seeking the optimal solutions for the station renovation in order to achieve a safe evacuation. A station model simulating a real metro station in Singapore is constructed to test the effectiveness and applicability of the proposed approach. It is found that (1) A safe evacuation could be achieved for the station, but along with the increasing passenger volume and panic level, the requirement of evacuation objectives, the evacuation time and density, may not be met. Especially under the high passenger volume conditions, the passenger density could reach up to 6.2 unit/m 2 (extremely dangerous); (2) An average improvement degree, 7.5%, can be achieved for the optimization of 20 test cases, and a maximum improvement degree, 22.5%, can be achieved for the evacuation optimization at metro stations; (3) It could be difficult to keep both of the evacuation time and density within the standards if one major exit is closed, even after the optimization. But a larger average improvement degree, 10.8%, can be achieved by the proposed optimization approach, which indicates the optimal solutions still could reduce the risk to a great extent. The novelty of this research lies in that (a) An RF algorithm is incorporated to build the meta-model that can properly represent the relationship between influential factors and objectives, despite the complexity and even conflicting between them; (b) Optimal measures for the evacuation improvement are provided from the MOO perspective by integrating NSGA-III. This hybrid approach can be used as a decision tool to assist regulatory authorities in developing effective emergency evacuation evaluation and optimization plans with adequate consideration of the complexity and multi-objective nature under evacuation events. • A 3D model of the metro station is built to simulate the dynamic process of passenger evacuation. • A framework with 9 factors and 3 objectives is developed to model passenger evacuation. • A random forest is used to build the meta-model and NSGA III is used for the optimization. • A real metro station in Singapore is constructed to test its effectiveness and applicability. • An average 7.5% and a maximum 22.5% of the evacuation optimization degree is presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
4秒前
一点通完成签到,获得积分10
4秒前
文静萤完成签到,获得积分10
4秒前
三明治发布了新的文献求助10
5秒前
吃花生酱的猫完成签到,获得积分10
5秒前
heli完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
巫青丝发布了新的文献求助10
6秒前
Czerkingsky完成签到,获得积分10
8秒前
夏青发布了新的文献求助10
9秒前
yare完成签到,获得积分20
9秒前
所所应助核桃采纳,获得10
10秒前
大模型应助核桃采纳,获得10
10秒前
汉堡包应助核桃采纳,获得10
10秒前
传奇3应助核桃采纳,获得10
11秒前
科研通AI6应助核桃采纳,获得10
11秒前
嘟噜嘟噜应助核桃采纳,获得10
11秒前
Ava应助核桃采纳,获得10
11秒前
11秒前
科研通AI6应助核桃采纳,获得10
11秒前
成绩好发布了新的文献求助10
11秒前
搜集达人应助KK采纳,获得10
11秒前
Owen应助山水之乐采纳,获得10
13秒前
14秒前
小马甲应助核桃采纳,获得30
16秒前
在水一方应助核桃采纳,获得10
16秒前
小马甲应助核桃采纳,获得10
16秒前
在水一方应助核桃采纳,获得10
16秒前
Ava应助核桃采纳,获得10
16秒前
小青椒应助核桃采纳,获得50
16秒前
小青椒应助核桃采纳,获得30
17秒前
Akim应助核桃采纳,获得10
17秒前
所所应助核桃采纳,获得10
17秒前
xumingli应助核桃采纳,获得50
17秒前
18秒前
伶俐雨双发布了新的文献求助10
18秒前
斯文败类应助夙夙采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422137
求助须知:如何正确求助?哪些是违规求助? 4537021
关于积分的说明 14155837
捐赠科研通 4453620
什么是DOI,文献DOI怎么找? 2442999
邀请新用户注册赠送积分活动 1434403
关于科研通互助平台的介绍 1411439