化学
草酸
水溶液
动力学同位素效应
同位素分馏
无机化学
蒽醌
分馏
光解
反应速率常数
同位素
质子化
动力学
光化学
有机化学
离子
氘
物理
量子力学
作者
Huifang Zhao,Bo Meng,Guangyi Sun,Che‐Jen Lin,Xinbin Feng,Jonas Sommar
标识
DOI:10.1021/acs.est.1c03171
摘要
We have investigated the chemistry and Hg isotope fractionation during the aqueous reduction of HgII by oxalic acid, p-quinone, quinol, and anthraquinone-2,6-disulfonate (AQDS), a derivate of anthraquinone (AQ) that is found in secondary organic aerosols (SOA) and building blocks of natural organic matter (NOM). Each reaction was examined for the effects of light, pH, and dissolved O2. Using an excess of ligand, UVB photolysis of HgII was seen to follow pseudo-first-order kinetics, with the highest rate of ∼10–3 s–1 observed for AQDS and oxalic acid. Mass-dependent fractionation (MDF) occurs by the normal kinetic isotope effect (KIE). Only the oxalate ion, rather than oxalic acid, is photoreactive when present in HgC2O4, which decomposes via two separate pathways distinguishable by isotope anomalies. Upon UVB photolysis, only the reduction mediated by AQDS results in a large odd number mass-independent fractionation (odd-MIF) signified by enrichment of odd isotopes in the reactant. Consistent with the rate, MDF, and odd-MIF reported for fulvic acid, our AQDS result confirms previous assumptions that quinones control HgII reduction in NOM-rich waters. Given the magnitude of odd-MIF triggered via a radical pair mechanism and the significant rate in the presence of air, reduction of HgII by photoproducts of AQDS may help explain the positive odd-MIF observed in ambient aerosols depleted of HgII.
科研通智能强力驱动
Strongly Powered by AbleSci AI