频率拓扑
耳蜗
生物
原肌球蛋白受体激酶B
神经营养素
原肌球蛋白受体激酶C
trk受体
神经科学
内耳
脑源性神经营养因子
神经营养素
毛细胞
原肌球蛋白受体激酶A
细胞生物学
神经营养因子
解剖
受体
生长因子
生物化学
血小板源性生长因子受体
作者
Thomas Schimmang,Justin Tan,Marcus Müller,Ulrike Zimmermann,Karin Rohbock,Iris Köpschall,Annette Limberger,Liliana Minichiello,Marlies Knipper
出处
期刊:Development
[The Company of Biologists]
日期:2003-08-18
卷期号:130 (19): 4741-4750
被引量:128
摘要
Members of the neurotrophin gene family and their high-affinity Trk receptors control innervation of the cochlea during embryonic development. Lack of neurotrophin signalling in the cochlea has been well documented for early postnatal animals, resulting in a loss of cochlear sensory neurones and a region-specific reduction of target innervation along the tonotopic axis. However, how reduced neurotrophin signalling affects the innervation of the mature cochlea is currently unknown. Here, we have analysed the consequences of a lack of the TrkB receptor and its ligand, the neurotrophin brain-derived neurotrophic factor (Bdnf), in the late postnatal or adult cochlea using mouse mutants. During early postnatal development, mutant animals show a lack of afferent innervation of outer hair cells in the apical part of the cochlea, whereas nerve fibres in the basal part are maintained. Strikingly, this phenotype is reversed during subsequent maturation of the cochlea, which results in a normal pattern of outer hair cell innervation in the apex and loss of nerve fibres at the base in adult mutants. Measurements of auditory brain stem responses of these mice revealed a significant hearing loss. The observed innervation patterns correlate with opposing gradients of Bdnf and Nt3 expression in cochlear neurones along the tonotopic axis. Thus, the reshaping of innervation may be controlled by autocrine signalling between neurotrophins and their receptors in cochlear neurones. Our results indicate a substantial potential for re-innervation processes in the mature cochlea, which may also be of relevance for treatment of hearing loss in humans.
科研通智能强力驱动
Strongly Powered by AbleSci AI