Theoretical computation of the electrocatalytic performance of CO2 reduction and hydrogen evolution reactions on graphdiyne monolayer supported precise number of copper atoms

催化作用 磁性 单层 材料科学 电催化剂 氧化还原 电化学 金属 化学物理 化学 物理化学 无机化学 纳米技术 电极 凝聚态物理 物理 有机化学 冶金
作者
Zhen Feng,Yanan Tang,Yaqiang Ma,Yi Li,Yawei Dai,Weiguang Chen,Guang Su,Zhiying Song,Xianqi Dai
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:46 (7): 5378-5389 被引量:44
标识
DOI:10.1016/j.ijhydene.2020.11.102
摘要

CO2 reduction (CO2RR) and hydrogen evolution reactions (HER) are widely used in advanced energy conversion systems, which are urgently required low-cost and high efficient electrocatalysts to overcome the sluggish reaction kinetic and ultralow selectivity. Here, the single-, double-, and triple-atomic Cu embedded graphdiyne (Cu1-3@GDY) complexes have been systematically modeled by first-principles computations to evaluate the corresponding electric structures and catalytic performance. The results revealed that these Cu1-3@GDY monolayers possess high thermal stability by forming the firm Cu–C bonds. The Cu1-3@GDY complexes exhibit good electrical conductivity, which could promote the charge transfer in the electroreduction process. The electronic and magnetic interactions between key species (∗H, ∗COOH, and ∗OCHO) and Cu1-3@GDY complexes are responsible for the different catalytic performance of HER and CO2RR on different Cu1-3@GDY sheets. The Cu2@GDY complex could efficiently convert CO2 to CH4 with a rather low limiting potential of −0.42 V due to the spin magnetism of catalysts. The Cu1@GDY and Cu3@GDY exhibit excellent HER catalytic performance, and their limiting potentials are −0.18 and −0.02 V, respectively. Our findings not only provide a valuable avenue for the design of atomic metal catalysts toward various catalytic reactions but also highlight an important role of spin magnetism in electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助久9采纳,获得10
刚刚
Orange应助云离采纳,获得10
1秒前
cwb发布了新的文献求助10
1秒前
共享精神应助Erislastem采纳,获得10
1秒前
Ava应助鹿呦呦采纳,获得30
2秒前
理论家发布了新的文献求助10
3秒前
3秒前
可爱的函函应助nixx采纳,获得10
4秒前
5秒前
深情安青应助科研八戒采纳,获得10
6秒前
6秒前
cwb完成签到,获得积分10
9秒前
10秒前
redspiderlily发布了新的文献求助10
11秒前
小周给小周的求助进行了留言
11秒前
王晓静完成签到 ,获得积分10
12秒前
斯文败类应助OaaO采纳,获得10
13秒前
14秒前
科研通AI2S应助123采纳,获得10
14秒前
hzauhzau发布了新的文献求助10
15秒前
15秒前
李健的小迷弟应助tt825采纳,获得10
15秒前
Zyyyh完成签到,获得积分10
17秒前
Air完成签到,获得积分10
20秒前
豆豆发布了新的文献求助10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
zjy发布了新的文献求助10
20秒前
JinguoChen应助科研通管家采纳,获得10
20秒前
一一应助科研通管家采纳,获得10
20秒前
一一应助科研通管家采纳,获得10
20秒前
烟花应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
田様应助ether采纳,获得10
22秒前
理论家完成签到,获得积分10
23秒前
SciGPT应助XU采纳,获得10
24秒前
25秒前
tt825发布了新的文献求助10
26秒前
今后应助xqq采纳,获得10
27秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836319
求助须知:如何正确求助?哪些是违规求助? 3378629
关于积分的说明 10505444
捐赠科研通 3098281
什么是DOI,文献DOI怎么找? 1706409
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772413