HBx公司
cccDNA
肝细胞癌
癌基因
癌症研究
乙型肝炎病毒
细胞周期
信使核糖核酸
分子医学
生物
肝硬化
病理
病毒学
医学
病毒
癌症
内科学
基因
生物化学
乙型肝炎表面抗原
作者
Xueli Jin,Suk Kyun Hong,Hwa Jung Kim,Sun‐Kyung Lee,Nam‐Joon Yi,Kwang‐Woong Lee,Kyung‐Suk Suh
标识
DOI:10.3892/ol.2019.10833
摘要
Chronic hepatitis B virus (HBV) is the leading cause of hepatocellular carcinoma (HCC). Covalently closed circular DNA (cccDNA) is an intermediate in the life cycle of HBV. HBV-encoded X protein (HBx), a key viral oncoprotein, can be specifically ubiquitylated by male specific lethal 2 (MSL2), which causes upregulation of HBx activity and promotes transcription, cell proliferation and tumor growth. The present study compared the levels of cccDNA, MSL2 mRNA and HBx mRNA in tumor and peri-tumor tissues, and clarified the effect of antiviral therapy on these indicators. Levels of intrahepatic cccDNA, MSL2 mRNA and HBx mRNA were determined using quantitative PCR in patients with HBV-associated HCC who had undergone liver surgery. A total of 50 patients were included in the present study. Prior to surgery, 31 patients had undergone antiviral treatment. Intrahepatic cccDNA levels were significantly higher in the tumor tissues compared with the peri-tumor tissues (P=0.001), particularly in the hepatitis B e antigen-positive (P=0.008), tumor recurrence (P=0.002) and <3 cm tumor size (P=0.003) groups. Furthermore, in patients with preoperative cirrhosis, levels of cccDNA and MSL2 mRNA were significantly higher in tumor tissues compared with that in peri-tumor tissues (P<0.001 and P=0.023, respectively). The expression levels of HBx mRNA in antiviral-treated tumors and peri-tumor tissues were significantly lower compared with those in untreated tissues (P=0.026 and P=0.035). The levels of cccDNA and MSL2 mRNA in the HBx-positive group were significantly higher in tumor tissues compared with those in peri-tumor tissues (P=0.026 and P=0.013). In conclusion, cccDNA participated in the tumorigenesis of HBV-associated HCC, and antiviral therapy was found to modulate hepatocarcinogenesis by decreasing the levels of HBx to inhibit the tumorigenic effect of MSL2 and cccDNA.
科研通智能强力驱动
Strongly Powered by AbleSci AI