Grasping Point Detection of Randomly Placed Fruit Cluster Using Adaptive Morphology Segmentation and Principal Component Classification of Multiple Features

分割 人工智能 模式识别(心理学) 主成分分析 核(代数) 计算机科学 图像分割 分类 连接部件 计算机视觉 GSM演进的增强数据速率 点(几何) 目标检测 连接元件标记 尺度空间分割 数学 算法 组合数学 几何学
作者
Qian Zhang,Guoqin Gao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 158035-158050 被引量:18
标识
DOI:10.1109/access.2019.2946267
摘要

Precise and rapid grasping point detection based on machine vision is one of the challenging problems in automatic sorting of randomly placed fruit clusters by robot. Grasping stalk of fruit cluster can improve grasping success probability and reduce fruit damage. For the problem that the segmentation of stalk candidates for randomly placed fruit cluster based on existing morphology algorithm tends to be low precision, an improved image segmentation algorithm based on adaptive morphology is proposed. According to edge distances defined based on minimum distance between edge point and unconnected components in minimum domain, the adaptive convolution kernel is constructed. In addition, a run analysis method with different and unordered labels is designed to reduce calculation time of edge distances. For the problem that it is difficult to describe and classify unconstraint stalk by existing features, an improved region classification algorithm based on principal components of multiple features is proposed. The descriptors based on features of object region are designed and principal components of multiple features are extracted based on variance contribution to improve precision and speed of stalk extraction. The proposed grasping point detection method of randomly placed fruit cluster based on improved morphology image segmentation and region classification algorithms is verified by experiments with grape clusters based on parallel robot sorting system. The results show that, compared with existing methods, the average precisions of segmentation and extraction for stalk increase by 9.89% and 2.17% respectively, the average precision and time of grasping point detection reach 94.50% and 2.01s respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小完成签到 ,获得积分10
5秒前
cdercder应助Omni采纳,获得20
7秒前
浅辰完成签到 ,获得积分10
11秒前
不要再忘登陆密码了完成签到,获得积分10
14秒前
Stone发布了新的文献求助10
20秒前
小蘑菇应助fly采纳,获得10
21秒前
MZ完成签到,获得积分0
21秒前
学术狂徒劲别完成签到,获得积分10
24秒前
千千千千千千青完成签到 ,获得积分10
31秒前
淡然平蓝完成签到 ,获得积分10
33秒前
我独舞完成签到 ,获得积分10
36秒前
38秒前
慕容博完成签到 ,获得积分10
42秒前
小田完成签到 ,获得积分10
45秒前
zokor完成签到 ,获得积分10
48秒前
酷酷邴完成签到,获得积分10
49秒前
ZhouYW完成签到,获得积分0
51秒前
无情夏寒完成签到 ,获得积分10
52秒前
55秒前
赛百味完成签到,获得积分10
56秒前
鸿毛药玖完成签到,获得积分10
57秒前
贝贝完成签到 ,获得积分10
58秒前
光亮语梦完成签到 ,获得积分10
58秒前
58秒前
1分钟前
Titanium发布了新的文献求助10
1分钟前
cdercder完成签到,获得积分0
1分钟前
jerry完成签到 ,获得积分10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
余味应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得100
1分钟前
斯文败类应助科研通管家采纳,获得30
1分钟前
余味应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
CyberHamster完成签到,获得积分10
1分钟前
gege完成签到,获得积分10
1分钟前
1分钟前
星辰大海应助郭伟采纳,获得10
1分钟前
太叔夜南完成签到,获得积分10
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800980
求助须知:如何正确求助?哪些是违规求助? 3346569
关于积分的说明 10329587
捐赠科研通 3063068
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726