Domino electroreduction of CO2 to methanol on a molecular catalyst

甲醇 电催化剂 催化作用 酞菁 法拉第效率 选择性 碳纳米管 化学 光化学 组合化学 电化学 二氧化碳电化学还原 一氧化碳 无机化学 材料科学 电极 有机化学 纳米技术 物理化学
作者
Yueshen Wu,Zhan Jiang,Lu Xu,Yongye Liang,Hailiang Wang
出处
期刊:Nature [Nature Portfolio]
卷期号:575 (7784): 639-642 被引量:973
标识
DOI:10.1038/s41586-019-1760-8
摘要

Electrochemical carbon dioxide (CO2) reduction can in principle convert carbon emissions to fuels and value-added chemicals, such as hydrocarbons and alcohols, using renewable energy, but the efficiency of the process is limited by its sluggish kinetics1,2. Molecular catalysts have well defined active sites and accurately tailorable structures that allow mechanism-based performance optimization, and transition-metal complexes have been extensively explored in this regard. However, these catalysts generally lack the ability to promote CO2 reduction beyond the two-electron process to generate more valuable products1,3. Here we show that when immobilized on carbon nanotubes, cobalt phthalocyanine—used previously to reduce CO2 to primarily CO—catalyses the six-electron reduction of CO2 to methanol with appreciable activity and selectivity. We find that the conversion, which proceeds via a distinct domino process with CO as an intermediate, generates methanol with a Faradaic efficiency higher than 40 per cent and a partial current density greater than 10 milliamperes per square centimetre at −0.94 volts with respect to the reversible hydrogen electrode in a near-neutral electrolyte. The catalytic activity decreases over time owing to the detrimental reduction of the phthalocyanine ligand, which can be suppressed by appending electron-donating amino substituents to the phthalocyanine ring. The improved molecule-based electrocatalyst converts CO2 to methanol with considerable activity and selectivity and with stable performance over at least 12 hours. Individual cobalt phthalocyanine derivative molecules immobilized on carbon nanotubes effectively catalyse the electroreduction of CO2 to methanol via a domino process with high activity and selectivity and stable performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
einuo发布了新的文献求助10
1秒前
Mycee完成签到 ,获得积分10
1秒前
MLi发布了新的文献求助30
2秒前
科研通AI6应助阿飞飞飞采纳,获得10
3秒前
6秒前
einuo完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助30
8秒前
8秒前
科研通AI5应助晴明关采纳,获得10
9秒前
榴莲姑娘发布了新的文献求助10
10秒前
科研混子表锅完成签到,获得积分10
10秒前
11秒前
11秒前
科研通AI6应助Iq采纳,获得10
11秒前
cocopepsi完成签到,获得积分10
12秒前
12秒前
不配.应助欢喜白梅采纳,获得80
12秒前
小马甲应助独特梨愁采纳,获得10
14秒前
七月流火应助风清扬采纳,获得50
15秒前
lm完成签到 ,获得积分10
15秒前
mm发布了新的文献求助10
16秒前
小毛毛想睡觉完成签到 ,获得积分10
17秒前
19秒前
超级不惜完成签到 ,获得积分10
19秒前
bkagyin应助机智剑封采纳,获得10
19秒前
19秒前
小张发布了新的文献求助10
20秒前
20秒前
Yjh完成签到,获得积分10
21秒前
顾矜应助王甜甜采纳,获得10
21秒前
Luckyze关注了科研通微信公众号
21秒前
22秒前
zyzraylene完成签到,获得积分10
23秒前
ascv发布了新的文献求助30
23秒前
23秒前
Karma应助Sun_Chen采纳,获得10
24秒前
不安青牛应助秋夏山采纳,获得10
24秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
rrr1应助andrele采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4278079
求助须知:如何正确求助?哪些是违规求助? 3806644
关于积分的说明 11926721
捐赠科研通 3453623
什么是DOI,文献DOI怎么找? 1894102
邀请新用户注册赠送积分活动 943898
科研通“疑难数据库(出版商)”最低求助积分说明 847740