Well production forecasting based on ARIMA-LSTM model considering manual operations

自回归积分移动平均 博克斯-詹金斯 时间序列 生产(经济) 计算机科学 运筹学 工业工程 工程类 人工智能 计量经济学 机器学习 经济 宏观经济学
作者
Dongyan Fan,Hai Sun,Jun Yao,Kai Zhang,Xia Yan,Zhixue Sun
出处
期刊:Energy [Elsevier BV]
卷期号:220: 119708-119708 被引量:252
标识
DOI:10.1016/j.energy.2020.119708
摘要

Accurate and efficient prediction of well production is essential for extending a well’s life cycle and improving reservoir recovery. Traditional models require expensive computational time and various types of formation and fluid data. Besides, frequent manual operations are always ignored because of their cumbersome processing. In this paper, a novel hybrid model is established that considers the advantages of linearity and nonlinearity, as well as the impact of manual operations. This integrates the autoregressive integrated moving average (ARIMA) model and the long short term memory (LSTM) model. The ARIMA model filters linear trends in the production time series data and passes on the residual value to the LSTM model. Given that the manual open-shut operations lead to nonlinear fluctuations, the residual and daily production time series are composed of the LSTM input data. To compare the performance of the hybrid models ARIMA-LSTM and ARIMA-LSTM-DP (Daily Production time series) with the ARIMA, LSTM, and LSTM-DP models, production time series of three actual wells are analyzed. Four indexes, namely, root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and similarity (Sim) values are evaluated to calculate the prediction accuracy. The results of the experiments indicate that the single ARIMA model has a good performance in the steady production decline curves. Conversely, the LSTM model has obvious advantages over the ARIMA model to the fluctuating nonlinear data. And coupling models (ARIMA-LSTM, ARIMA-LSTM-DP) exhibit better results than the individual ARIMA, LSTM, or LSTM-DP models, wherein the ARIMA-LSTM-DP model performs even better when the well production series are affected by frequent manual operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助沉默的芒果采纳,获得10
1秒前
浮生发布了新的文献求助10
1秒前
蜗牛完成签到,获得积分10
2秒前
在水一方应助帅气冰珍采纳,获得10
2秒前
英姑应助帅帅中带点小坏采纳,获得10
3秒前
3秒前
乐乐应助bingsu108采纳,获得10
3秒前
Ava应助cumtxzs采纳,获得10
4秒前
远山笑你完成签到 ,获得积分10
5秒前
lianmeiliu发布了新的文献求助10
6秒前
6秒前
8秒前
adi完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
小W完成签到 ,获得积分10
15秒前
16秒前
17秒前
lqqqq发布了新的文献求助10
19秒前
20秒前
20秒前
bububusbu完成签到,获得积分10
22秒前
22秒前
23秒前
Hello应助谁家那小谁采纳,获得10
24秒前
啊哒吸哇完成签到,获得积分10
24秒前
黄青青完成签到,获得积分10
25秒前
最爱吃的柠檬酸完成签到,获得积分10
30秒前
赘婿应助刘杰青采纳,获得10
31秒前
32秒前
33秒前
34秒前
bobo完成签到,获得积分10
35秒前
浦老四完成签到,获得积分10
36秒前
36秒前
共享精神应助obaica采纳,获得10
36秒前
37秒前
奋斗绮波发布了新的文献求助10
38秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842878
求助须知:如何正确求助?哪些是违规求助? 3384881
关于积分的说明 10537922
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710326
邀请新用户注册赠送积分活动 823582
科研通“疑难数据库(出版商)”最低求助积分说明 774149