清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A scalable SCENIC workflow for single-cell gene regulatory network analysis

调节器 工作流程 计算生物学 可扩展性 计算机科学 基因 数据挖掘 生物 转录因子 遗传学 数据库
作者
Bram Van de Sande,Christopher Flerin,Kristofer Davie,Maxime De Waegeneer,Gert Hulselmans,Sara Aibar,Ruth Seurinck,Wouter Saelens,Robrecht Cannoodt,Quentin Rouchon,Toni Verbeiren,Dries De Maeyer,Joke Reumers,Yvan Saeys,Stein Aerts
出处
期刊:Nature Protocols [Springer Nature]
卷期号:15 (7): 2247-2276 被引量:1383
标识
DOI:10.1038/s41596-020-0336-2
摘要

This protocol explains how to perform a fast SCENIC analysis alongside standard best practices steps on single-cell RNA-sequencing data using software containers and Nextflow pipelines. SCENIC reconstructs regulons (i.e., transcription factors and their target genes) assesses the activity of these discovered regulons in individual cells and uses these cellular activity patterns to find meaningful clusters of cells. Here we present an improved version of SCENIC with several advances. SCENIC has been refactored and reimplemented in Python (pySCENIC), resulting in a tenfold increase in speed, and has been packaged into containers for ease of use. It is now also possible to use epigenomic track databases, as well as motifs, to refine regulons. In this protocol, we explain the different steps of SCENIC: the workflow starts from the count matrix depicting the gene abundances for all cells and consists of three stages. First, coexpression modules are inferred using a regression per-target approach (GRNBoost2). Next, the indirect targets are pruned from these modules using cis-regulatory motif discovery (cisTarget). Lastly, the activity of these regulons is quantified via an enrichment score for the regulon’s target genes (AUCell). Nonlinear projection methods can be used to display visual groupings of cells based on the cellular activity patterns of these regulons. The results can be exported as a loom file and visualized in the SCope web application. This protocol is illustrated on two use cases: a peripheral blood mononuclear cell data set and a panel of single-cell RNA-sequencing cancer experiments. For a data set of 10,000 genes and 50,000 cells, the pipeline runs in <2 h. SCENIC is a computational pipeline to predict cell-type-specific transcription factors through network inference and motif enrichment. Here the authors describe a detailed protocol for pySCENIC: a faster, container-based implementation in Python.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的蜗牛完成签到,获得积分10
12秒前
楼马完成签到 ,获得积分10
32秒前
ling发布了新的文献求助10
58秒前
ZYP发布了新的文献求助10
58秒前
Luna爱科研完成签到 ,获得积分10
1分钟前
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
希望天下0贩的0应助ling采纳,获得10
1分钟前
1分钟前
bajiu完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Criminology34举报南宫尔蓝求助涉嫌违规
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
xxi关闭了xxi文献求助
3分钟前
3分钟前
3分钟前
3分钟前
Owen应助xxi采纳,获得10
3分钟前
duoduo完成签到 ,获得积分10
3分钟前
ZYP发布了新的文献求助10
4分钟前
4分钟前
一二发布了新的文献求助10
4分钟前
4分钟前
一二完成签到,获得积分10
4分钟前
qqq完成签到,获得积分10
4分钟前
所所应助liuzf采纳,获得10
5分钟前
科目三应助科研通管家采纳,获得10
5分钟前
佳言2009完成签到 ,获得积分10
5分钟前
黑大侠完成签到 ,获得积分0
5分钟前
Leo完成签到,获得积分20
5分钟前
5分钟前
Leo发布了新的文献求助10
5分钟前
liuzf发布了新的文献求助10
5分钟前
5分钟前
xxi发布了新的文献求助10
5分钟前
小马甲应助liuzf采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639821
求助须知:如何正确求助?哪些是违规求助? 4750881
关于积分的说明 15007447
捐赠科研通 4798042
什么是DOI,文献DOI怎么找? 2564135
邀请新用户注册赠送积分活动 1522976
关于科研通互助平台的介绍 1482639