Scalable Algorithm for Resolving Incorrect Occlusion in Dynamic Augmented Reality Engineering Environments

计算机科学 可视化 增强现实 动画 计算机图形学(图像) 虚拟现实 可扩展性 人机交互 计算机视觉 平面图(考古学) 块(置换群论) 人工智能 数据库 几何学 数学 考古 历史
作者
Amir H. Behzadan,Vineet R. Kamat
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:25 (1): 3-19 被引量:30
标识
DOI:10.1111/j.1467-8667.2009.00601.x
摘要

Abstract: Augmented reality (AR) offers significant potential in construction, manufacturing, and other engineering disciplines that employ graphical visualization to plan and design their operations. As a result of introducing real-world objects into the visualization, less virtual models have to be deployed to create a realistic visual output that directly translates into less time and effort required to create, render, manipulate, manage, and update three-dimensional (3D) virtual contents (CAD model engineering) of the animated scene. At the same time, using the existing layout of land or plant as the background of visualization significantly alleviates the need to collect data about the surrounding environment prior to creating the final visualization while providing visually convincing representations of the processes being studied. In an AR animation, virtual and real objects must be simultaneously managed and accurately displayed to a user to create a visually convincing illusion of their coexistence and interaction. A critical challenge impeding this objective is the problem of incorrect occlusion that manifests itself when real objects in an AR scene partially or wholly block the view of virtual objects. In the presented research, a new AR occlusion handling system based on depth-sensing algorithms and frame buffer manipulation techniques was designed and implemented. This algorithm is capable of resolving incorrect occlusion occurring in dynamic AR environments in real time using depth-sensing equipment such as laser detection and ranging (LADAR) devices, and can be integrated into any mobile AR platform that allows a user to navigate freely and observe a dynamic AR scene from any vantage position.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助kls采纳,获得30
刚刚
1秒前
牛西潼发布了新的文献求助10
1秒前
catherine发布了新的文献求助10
1秒前
1秒前
1秒前
浮游应助平常亦凝采纳,获得10
1秒前
Qiqi完成签到 ,获得积分10
2秒前
善学以致用应助小火孩采纳,获得10
2秒前
Hello应助陈龙采纳,获得10
2秒前
和谐尔阳发布了新的文献求助10
2秒前
3秒前
Rainbow0224发布了新的文献求助30
3秒前
嘉欣完成签到,获得积分10
3秒前
小米粥发布了新的文献求助10
4秒前
4秒前
科研通AI6应助Sophia采纳,获得10
4秒前
lili完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
tenacity完成签到,获得积分10
7秒前
7秒前
自由人完成签到 ,获得积分10
7秒前
7秒前
Even发布了新的文献求助10
7秒前
布知道发布了新的文献求助10
8秒前
8秒前
yuechat发布了新的文献求助10
8秒前
SciGPT应助zhihui采纳,获得10
8秒前
sober完成签到,获得积分10
8秒前
9秒前
烹鱼宴糊锅完成签到,获得积分10
9秒前
风的季节发布了新的文献求助10
9秒前
duan完成签到 ,获得积分10
10秒前
10秒前
可爱的函函应助wzz采纳,获得10
10秒前
ZZZ完成签到,获得积分10
10秒前
紫苏完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576966
求助须知:如何正确求助?哪些是违规求助? 4662231
关于积分的说明 14740378
捐赠科研通 4602878
什么是DOI,文献DOI怎么找? 2525991
邀请新用户注册赠送积分活动 1495885
关于科研通互助平台的介绍 1465470