耗散系统
有限元法
断裂(地质)
偏微分方程
断裂力学
本构方程
计算机科学
机械
消散
材料科学
物理
结构工程
数学分析
数学
工程类
热力学
复合材料
作者
Ved Prakash,Akash Kumar Behera,Mohammad Masiur Rahaman
标识
DOI:10.1177/10812865221085198
摘要
In this article, we propose a thermodynamically consistent phase-field model for thermo-mechanical fracture and provide an open-source implementation of the proposed model using a recently developed finite element toolbox, Gridap in Julia. Here, we have derived the balance equations for the thermo-mechanical fracture by invoking the virtual power principle and determined the constitutive relations for the thermodynamic fluxes based on the satisfaction of the thermodynamic laws. Our proposed formulation provides an equation of temperature evolution that can easily accommodate dissipative effects such as viscous damping. We provide very compact and user-friendly open-source codes for implementing the proposed model using Gridap in Julia that requires very low memory usage and gives a high degree of flexibility to the users in defining weak forms of the governing partial differential equations (PDEs). We have validated the proposed model and its implementation against such standard results available in the literature as crack propagation in the cruciform shape material, single edge notched plate, bi-material beam, and a quenching test.
科研通智能强力驱动
Strongly Powered by AbleSci AI