Nonlinear Transform Source-Channel Coding for Semantic Communications

计算机科学 源代码 编解码器 分布式信源编码 可变长度代码 人工智能 算法 解码方法 电信 操作系统
作者
Jincheng Dai,Sixian Wang,Kailin Tan,Zhongwei Si,Xiaoqi Qin,Kai Niu,Ping Zhang
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:40 (8): 2300-2316 被引量:97
标识
DOI:10.1109/jsac.2022.3180802
摘要

In this paper, we propose a class of high-efficiency deep joint source-channel coding methods that can closely adapt to the source distribution under the nonlinear transform, it can be collected under the name nonlinear transform source-channel coding (NTSCC). In the considered model, the transmitter first learns a nonlinear analysis transform to map the source data into latent space, then transmits the latent representation to the receiver via deep joint source-channel coding. Our model incorporates the nonlinear transform as a strong prior to effectively extract the source semantic features and provide side information for source-channel coding. Unlike existing conventional deep joint source-channel coding methods, the proposed NTSCC essentially learns both the source latent representation and an entropy model as the prior on the latent representation. Accordingly, novel adaptive rate transmission and hyperprior-aided codec refinement mechanisms are developed to upgrade deep joint source-channel coding. The whole system design is formulated as an optimization problem whose goal is to minimize the end-to-end transmission rate-distortion performance under established perceptual quality metrics. Across test image sources with various resolutions, we find that the proposed NTSCC transmission method generally outperforms both the analog transmission using the standard deep joint source-channel coding and the classical separation-based digital transmission. Notably, the proposed NTSCC method can potentially support future semantic communications due to its content-aware ability and perceptual optimization goal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
你好发布了新的文献求助10
刚刚
苗月月发布了新的文献求助10
1秒前
ckmen5发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
听eryi完成签到,获得积分10
2秒前
3秒前
李健应助fanboyz采纳,获得10
4秒前
weihuiru发布了新的文献求助10
4秒前
乐乐应助willow采纳,获得20
5秒前
nozero应助namaka采纳,获得50
5秒前
科研通AI5应助smile采纳,获得10
5秒前
妮子要学习完成签到,获得积分10
6秒前
6秒前
leery发布了新的文献求助10
6秒前
科研通AI5应助lv采纳,获得10
6秒前
6秒前
7秒前
是龙龙呀发布了新的文献求助10
7秒前
ding应助噗噗xie采纳,获得10
7秒前
Lanna完成签到,获得积分10
7秒前
dorken发布了新的文献求助10
7秒前
wbb发布了新的文献求助10
7秒前
陈炜smile完成签到,获得积分10
8秒前
安静笑晴发布了新的文献求助30
8秒前
淡定荔枝完成签到,获得积分10
8秒前
koala发布了新的文献求助10
9秒前
JamesPei应助木子采纳,获得10
9秒前
充电宝应助你好采纳,获得10
9秒前
TIANHD发布了新的文献求助10
10秒前
等待毛豆完成签到,获得积分10
10秒前
城南发布了新的文献求助10
11秒前
今后应助想要发文章采纳,获得30
11秒前
纯真的笑珊完成签到,获得积分10
11秒前
美好依瑶发布了新的文献求助10
12秒前
12秒前
哈哈完成签到,获得积分10
12秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Nivolumab and relatlimab for the treatment of melanoma 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832287
求助须知:如何正确求助?哪些是违规求助? 3374638
关于积分的说明 10485696
捐赠科研通 3094405
什么是DOI,文献DOI怎么找? 1703517
邀请新用户注册赠送积分活动 819480
科研通“疑难数据库(出版商)”最低求助积分说明 771587