Differential diagnosis of lung cancer and benign lung lesion using salivary metabolites: A preliminary study

医学 唾液 生物标志物 肺癌 代谢物 内科学 曲线下面积 置信区间 胃肠病学 病理 肿瘤科 生物化学 化学
作者
Satoshi Takamori,Shinya Ishikawa,Jun Suzuki,Hiroyuki Oizumi,Tetsuro Uchida,Shohei Ueda,Kaoru Edamatsu,Mitsuyoshi Iino,Masahiro Sugimoto
出处
期刊:Thoracic Cancer [Wiley]
卷期号:13 (3): 460-465 被引量:13
标识
DOI:10.1111/1759-7714.14282
摘要

Saliva is often used as a biomarker for the diagnosis of some oral and systematic diseases, owing to the non-invasive attribute of the fluid. In this study, we aimed to identify salivary biomarkers for distinguishing lung cancer (LC) from benign lung lesion (BLL).Unstimulated saliva samples were collected from 41 patients with LC and 21 with BLL. Salivary metabolites were comprehensively analyzed using capillary electrophoresis mass spectrometry. To differentiate between patients with LCs and BLLs, the discriminatory ability of each biomarker was assessed. Furthermore, a multiple logistic regression (MLR) model was developed for evaluating discriminatory ability of each salivary metabolite.The profiles of 10 salivary metabolites were remarkably different between the LC and BLL samples. Among them, the concentration of salivary tryptophan was significantly lower in the samples from patients with LC than in those from patients with BLL, and the area under the curve (AUC) for discriminating patients with LC from those with BLL was 0.663 (95% confidence interval [CI] = 0.516-0.810, p = 0.036). Furthermore, from the MLR model developed using these metabolites, diethanolamine, cytosine, lysine, and tyrosine, were selected using the back-selection regression method. The MLR model based on these four metabolites had a high discriminatory ability for patients with LC and those with BLL (AUC = 0.729, 95% CI = 0.598-0.861, p = 0.003).The four salivary metabolites can serve as potential non-invasive biomarkers for distinguishing LC from BLL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
风中的冰蓝完成签到,获得积分10
2秒前
3秒前
科研通AI5应助寇博翔采纳,获得10
3秒前
miaomiao123发布了新的文献求助10
3秒前
4秒前
tk发布了新的文献求助10
4秒前
4秒前
一年5篇发布了新的文献求助10
5秒前
云焕完成签到,获得积分10
5秒前
5秒前
可爱的函函应助小桑桑采纳,获得20
5秒前
5秒前
儒飞完成签到,获得积分10
6秒前
昏睡的冰双完成签到,获得积分20
6秒前
勤奋紊应助踏实秋凌采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
甜橙汁发布了新的文献求助10
7秒前
韩立完成签到 ,获得积分10
7秒前
daoketuo完成签到,获得积分10
7秒前
一盏壶完成签到,获得积分10
8秒前
9秒前
wjm完成签到,获得积分10
9秒前
三余完成签到,获得积分10
10秒前
王十灵发布了新的文献求助10
10秒前
sscihard完成签到,获得积分10
12秒前
12秒前
JamesPei应助dayday采纳,获得10
12秒前
llyu发布了新的文献求助10
12秒前
无花果应助科研通管家采纳,获得30
13秒前
子车茗应助科研通管家采纳,获得30
13秒前
鹅鹅鹅应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得20
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
华仔应助surfing采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4699638
求助须知:如何正确求助?哪些是违规求助? 4068407
关于积分的说明 12578157
捐赠科研通 3767994
什么是DOI,文献DOI怎么找? 2080979
邀请新用户注册赠送积分活动 1108882
科研通“疑难数据库(出版商)”最低求助积分说明 987107