Interaction-Aware Graph Neural Networks for Fault Diagnosis of Complex Industrial Processes

计算机科学 图形 断层(地质) GSM演进的增强数据速率 人工神经网络 模式识别(心理学) 传感器融合 特征(语言学) 人工智能 数据挖掘 理论计算机科学 语言学 地质学 哲学 地震学
作者
Dongyue Chen,Ruonan Liu,Qinghua Hu,Steven X. Ding
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (9): 6015-6028 被引量:73
标识
DOI:10.1109/tnnls.2021.3132376
摘要

Fault diagnosis of complex industrial processes becomes a challenging task due to various fault patterns in sensor signals and complex interactions between different units. However, how to explore the interactions and integrate with sensor signals remains an open question. Considering that the sensor signals and their interactions in an industrial process with the form of nodes and edges can be represented as a graph, this article proposes a novel interaction-aware and data fusion method for fault diagnosis of complex industrial processes, named interaction-aware graph neural networks (IAGNNs). First, to describe the complex interactions in an industrial process, the sensor signals are transformed into a heterogeneous graph with multiple edge types, and the edge weights are learned by the attention mechanism, adaptively. Then, multiple independent graph neural network (GNN) blocks are employed to extract the fault feature for each subgraph with one edge type. Finally, each subgraph feature is concatenated or fused by a weighted summation function to generate the final graph embedding. Therefore, the proposed method can learn multiple interactions between sensor signals and extract the fault feature from each subgraph by message passing operation of GNNs. The final fault feature contains the information from raw data and implicit interactions between sensor signals. The experimental results on the three-phase flow facility and power system (PS) demonstrate the reliable and superior performance of the proposed method for fault diagnosis of complex industrial processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路鸣泽完成签到,获得积分20
刚刚
蔡姬完成签到,获得积分10
刚刚
1秒前
叶汲完成签到,获得积分10
1秒前
Akim应助漫漫采纳,获得10
2秒前
Keira_Chang发布了新的文献求助10
3秒前
顺利的源智完成签到,获得积分10
4秒前
bkagyin应助ohahaha采纳,获得300
4秒前
Jasper应助生动驳采纳,获得10
6秒前
7秒前
冷静映安完成签到,获得积分10
8秒前
szt完成签到,获得积分10
8秒前
拉格朗日柴犬完成签到,获得积分10
9秒前
齐明皓完成签到,获得积分10
10秒前
冰冻沙丁鱼完成签到,获得积分10
10秒前
11秒前
wanci应助李亦书采纳,获得10
11秒前
hongxing liu完成签到,获得积分10
12秒前
dudu完成签到,获得积分10
12秒前
12秒前
李sir发布了新的文献求助10
13秒前
小李发布了新的文献求助10
13秒前
lxy应助瓜尔佳采纳,获得10
13秒前
15秒前
xjcy发布了新的文献求助10
15秒前
15秒前
15秒前
凯文完成签到 ,获得积分10
16秒前
科目三应助包容的千兰采纳,获得10
18秒前
zzzhu发布了新的文献求助10
19秒前
Ray-Q完成签到,获得积分10
19秒前
20秒前
完美世界应助Lydia采纳,获得10
20秒前
20秒前
汉堡包应助Lone采纳,获得10
21秒前
丁仪完成签到,获得积分10
22秒前
小军完成签到,获得积分10
23秒前
25秒前
25秒前
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794745
求助须知:如何正确求助?哪些是违规求助? 3339531
关于积分的说明 10296585
捐赠科研通 3056322
什么是DOI,文献DOI怎么找? 1676961
邀请新用户注册赠送积分活动 804956
科研通“疑难数据库(出版商)”最低求助积分说明 762244