已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Data-driven model for improving wall-modeled large-eddy simulation of supersonic turbulent flows with separation

超音速 物理 流量(数学) 大涡模拟 湍流 机械 机器学习 人工智能 计算机科学
作者
Rozie Zangeneh
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:33 (12) 被引量:24
标识
DOI:10.1063/5.0072550
摘要

A machine learning algorithm is presented, serving as a data-driven modeling tool for wall-modeled large eddy simulations (WMLESs). The proposed model is formulated to address the problems of log layer mismatch and inaccurate prediction of skin friction, particularly for supersonic separated and reattached flows. This machine learning algorithm uses random forest regression to map the local mean flow fields to the discrepancies in the skin friction (heat flux) while complying with Galilean invariance as the flow features input is provided using relative velocities. The model is tested on two different supersonic flows, namely, flow over a flat plate and flow around an expansion-compression corner. The performance is evaluated by comparing the skin friction (heat flux) and flow properties with exact values. The ultimate goal is to build a robust and generalizable machine learning model to improve the prediction of WMLES of supersonic flows. To this end, the model is trained by a set of flows containing some essential flow physics to devise a generalizable model. Although the general machine learning model shows some advantages over the baseline WMLES model, it is concluded the data set is far from being representative of the rich flow physics model; therefore, the machine learning model should be trained and tested by a broader set of flows.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
李爱国应助二十二采纳,获得10
4秒前
4秒前
哈哈哈哈完成签到 ,获得积分10
5秒前
dddd完成签到 ,获得积分10
6秒前
Lian发布了新的文献求助10
6秒前
沧海静音发布了新的文献求助10
7秒前
balabala发布了新的文献求助10
8秒前
HaonanZhang发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
忘桑榆完成签到,获得积分10
12秒前
13秒前
JiahaoRao应助Aegean采纳,获得20
13秒前
单薄傲易发布了新的文献求助10
15秒前
yarkye完成签到,获得积分10
16秒前
机长完成签到 ,获得积分10
17秒前
YZY完成签到,获得积分10
18秒前
18秒前
今后应助zhengxiaomin1992采纳,获得10
18秒前
hellokk发布了新的文献求助50
19秒前
852应助lllz采纳,获得30
19秒前
单薄傲易完成签到,获得积分10
23秒前
研友_VZG7GZ应助joe采纳,获得10
24秒前
二十二完成签到,获得积分10
25秒前
隐形曼青应助木木采纳,获得10
26秒前
26秒前
无花果应助JG采纳,获得10
27秒前
30秒前
30秒前
31秒前
31秒前
Lian完成签到,获得积分10
32秒前
kk发布了新的文献求助10
32秒前
33秒前
开心香岚发布了新的文献求助10
35秒前
35秒前
Ava应助hellokk采纳,获得50
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542713
求助须知:如何正确求助?哪些是违规求助? 4628923
关于积分的说明 14610300
捐赠科研通 4570087
什么是DOI,文献DOI怎么找? 2505599
邀请新用户注册赠送积分活动 1482928
关于科研通互助平台的介绍 1454289