Comparison of deep learning-based emission-only attenuation correction methods for positron emission tomography

衰减校正 衰减 正电子发射断层摄影术 卷积神经网络 核医学 人工智能 计算机科学 相似性(几何) 人工神经网络 模式识别(心理学) 卷积(计算机科学) 迭代重建 物理 光学 医学 图像(数学)
作者
Donghwi Hwang,Seung Kwan Kang,Kyeong Yun Kim,Hongyoon Choi,Jae Sung Lee
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:49 (6): 1833-1842 被引量:16
标识
DOI:10.1007/s00259-021-05637-0
摘要

PurposeThis study aims to compare two approaches using only emission PET data and a convolution neural network (CNN) to correct the attenuation (μ) of the annihilation photons in PET.MethodsOne of the approaches uses a CNN to generate μ-maps from the non-attenuation-corrected (NAC) PET images (μ-CNNNAC). In the other method, CNN is used to improve the accuracy of μ-maps generated using maximum likelihood estimation of activity and attenuation (MLAA) reconstruction (μ-CNNMLAA). We investigated the improvement in the CNN performance by combining the two methods (μ-CNNMLAA+NAC) and the suitability of μ-CNNNAC for providing the scatter distribution required for MLAA reconstruction. Image data from 18F-FDG (n = 100) or 68 Ga-DOTATOC (n = 50) PET/CT scans were used for neural network training and testing.ResultsThe error of the attenuation correction factors estimated using μ-CT and μ-CNNNAC was over 7%, but that of scatter estimates was only 2.5%, indicating the validity of the scatter estimation from μ-CNNNAC. However, CNNNAC provided less accurate bone structures in the μ-maps, while the best results in recovering the fine bone structures were obtained by applying CNNMLAA+NAC. Additionally, the μ-values in the lungs were overestimated by CNNNAC. Activity images (λ) corrected for attenuation using μ-CNNMLAA and μ-CNNMLAA+NAC were superior to those corrected using μ-CNNNAC, in terms of their similarity to λ-CT. However, the improvement in the similarity with λ-CT by combining the CNNNAC and CNNMLAA approaches was insignificant (percent error for lung cancer lesions, λ-CNNNAC = 5.45% ± 7.88%; λ-CNNMLAA = 1.21% ± 5.74%; λ-CNNMLAA+NAC = 1.91% ± 4.78%; percent error for bone cancer lesions, λ-CNNNAC = 1.37% ± 5.16%; λ-CNNMLAA = 0.23% ± 3.81%; λ-CNNMLAA+NAC = 0.05% ± 3.49%).ConclusionThe use of CNNNAC was feasible for scatter estimation to address the chicken-egg dilemma in MLAA reconstruction, but CNNMLAA outperformed CNNNAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贰什柒发布了新的文献求助10
2秒前
。。。发布了新的文献求助10
3秒前
4秒前
4秒前
小马甲应助majun采纳,获得10
4秒前
落叶为谁殇完成签到,获得积分10
5秒前
啦啦完成签到,获得积分20
8秒前
Portafortuna发布了新的文献求助10
9秒前
浪费发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
12秒前
13秒前
我很懵逼发布了新的文献求助10
14秒前
852应助认真夜云采纳,获得10
15秒前
15秒前
15秒前
16秒前
平凡世界完成签到 ,获得积分10
16秒前
16秒前
Ailin发布了新的文献求助10
16秒前
LXXue完成签到,获得积分10
16秒前
17秒前
月满西楼发布了新的文献求助100
17秒前
流氓恐龙完成签到,获得积分10
18秒前
19秒前
脑洞疼应助lsq采纳,获得30
20秒前
科研通AI2S应助Portafortuna采纳,获得10
20秒前
LXXue发布了新的文献求助10
21秒前
Emanuel发布了新的文献求助10
21秒前
to高坚果发布了新的文献求助10
22秒前
研友_VZG7GZ应助hanhan采纳,获得10
22秒前
majun发布了新的文献求助10
22秒前
subcrym完成签到,获得积分10
24秒前
24秒前
凶凶完成签到,获得积分10
25秒前
王哈哈发布了新的文献求助10
25秒前
昊天锤完成签到,获得积分10
27秒前
陈奕迅发布了新的文献求助10
28秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802474
求助须知:如何正确求助?哪些是违规求助? 3348068
关于积分的说明 10336437
捐赠科研通 3064012
什么是DOI,文献DOI怎么找? 1682348
邀请新用户注册赠送积分活动 808078
科研通“疑难数据库(出版商)”最低求助积分说明 763997