亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of deep learning-based emission-only attenuation correction methods for positron emission tomography

衰减校正 衰减 正电子发射断层摄影术 卷积神经网络 核医学 人工智能 计算机科学 相似性(几何) 人工神经网络 模式识别(心理学) 卷积(计算机科学) 迭代重建 物理 光学 医学 图像(数学)
作者
Donghwi Hwang,Seung Kwan Kang,Kyeong Yun Kim,Hongyoon Choi,Jae Sung Lee
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:49 (6): 1833-1842 被引量:16
标识
DOI:10.1007/s00259-021-05637-0
摘要

PurposeThis study aims to compare two approaches using only emission PET data and a convolution neural network (CNN) to correct the attenuation (μ) of the annihilation photons in PET.MethodsOne of the approaches uses a CNN to generate μ-maps from the non-attenuation-corrected (NAC) PET images (μ-CNNNAC). In the other method, CNN is used to improve the accuracy of μ-maps generated using maximum likelihood estimation of activity and attenuation (MLAA) reconstruction (μ-CNNMLAA). We investigated the improvement in the CNN performance by combining the two methods (μ-CNNMLAA+NAC) and the suitability of μ-CNNNAC for providing the scatter distribution required for MLAA reconstruction. Image data from 18F-FDG (n = 100) or 68 Ga-DOTATOC (n = 50) PET/CT scans were used for neural network training and testing.ResultsThe error of the attenuation correction factors estimated using μ-CT and μ-CNNNAC was over 7%, but that of scatter estimates was only 2.5%, indicating the validity of the scatter estimation from μ-CNNNAC. However, CNNNAC provided less accurate bone structures in the μ-maps, while the best results in recovering the fine bone structures were obtained by applying CNNMLAA+NAC. Additionally, the μ-values in the lungs were overestimated by CNNNAC. Activity images (λ) corrected for attenuation using μ-CNNMLAA and μ-CNNMLAA+NAC were superior to those corrected using μ-CNNNAC, in terms of their similarity to λ-CT. However, the improvement in the similarity with λ-CT by combining the CNNNAC and CNNMLAA approaches was insignificant (percent error for lung cancer lesions, λ-CNNNAC = 5.45% ± 7.88%; λ-CNNMLAA = 1.21% ± 5.74%; λ-CNNMLAA+NAC = 1.91% ± 4.78%; percent error for bone cancer lesions, λ-CNNNAC = 1.37% ± 5.16%; λ-CNNMLAA = 0.23% ± 3.81%; λ-CNNMLAA+NAC = 0.05% ± 3.49%).ConclusionThe use of CNNNAC was feasible for scatter estimation to address the chicken-egg dilemma in MLAA reconstruction, but CNNMLAA outperformed CNNNAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玄音完成签到,获得积分10
29秒前
汉堡包应助通义千问采纳,获得10
1分钟前
隐形曼青应助小米辣采纳,获得30
1分钟前
2分钟前
通义千问发布了新的文献求助10
2分钟前
柔弱藏今发布了新的文献求助10
2分钟前
小米辣完成签到,获得积分10
3分钟前
3分钟前
吃了就会胖完成签到 ,获得积分10
3分钟前
小米辣发布了新的文献求助30
3分钟前
dream完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
丫子天空发布了新的文献求助10
3分钟前
3分钟前
lzxbarry应助andrele采纳,获得30
4分钟前
燕子完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
呆萌的鼠标完成签到 ,获得积分0
5分钟前
5分钟前
似水无痕完成签到,获得积分10
5分钟前
Anto完成签到,获得积分10
5分钟前
kuoping完成签到,获得积分0
5分钟前
李健应助科研通管家采纳,获得10
6分钟前
丫子天空完成签到,获得积分20
6分钟前
QCB完成签到 ,获得积分10
6分钟前
wodetaiyangLLL完成签到 ,获得积分10
6分钟前
科研通AI5应助彭日晓采纳,获得10
6分钟前
ZHANG完成签到 ,获得积分10
7分钟前
tenta完成签到,获得积分10
7分钟前
8分钟前
8分钟前
8分钟前
千里草完成签到,获得积分10
8分钟前
彭日晓发布了新的文献求助10
8分钟前
significant发布了新的文献求助10
8分钟前
8分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569068
求助须知:如何正确求助?哪些是违规求助? 3991392
关于积分的说明 12355756
捐赠科研通 3663569
什么是DOI,文献DOI怎么找? 2019007
邀请新用户注册赠送积分活动 1053435
科研通“疑难数据库(出版商)”最低求助积分说明 940978