Artificial Intelligence (AI) in Drugs and Pharmaceuticals

计算机科学 人工智能 药品 药物发现 机器学习 数据科学 生化工程 药理学 医学 化学 工程类 生物化学
作者
Adarsh Sahu,Jyotika Mishra,Namrata Kushwaha
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
卷期号:25 (11): 1818-1837 被引量:43
标识
DOI:10.2174/1386207325666211207153943
摘要

The advancement of computing and technology has invaded all the dimensions of science. Artificial intelligence (AI) is one core branch of Computer Science, which has percolated to all the arenas of science and technology, from core engineering to medicines. Thus, AI has found its way for application in the field of medicinal chemistry and heath care. The conventional methods of drug design have been replaced by computer-aided designs of drugs in recent times. AI is being used extensively to improve the design techniques and required time of the drugs. Additionally, the target proteins can be conveniently identified using AI, which enhances the success rate of the designed drug. The AI technology is used in each step of the drug designing procedure, which decreases the health hazards related to preclinical trials and also reduces the cost substantially. The AI is an effective tool for data mining based on the huge pharmacological data and machine learning process. Hence, AI has been used in de novo drug design, activity scoring, virtual screening and in silico evaluation in the properties (absorption, distribution, metabolism, excretion and toxicity) of a drug molecule. Various pharmaceutical companies have teamed up with AI companies for faster progress in the field of drug development, along with the healthcare system. The review covers various aspects of AI (Machine learning, Deep learning, Artificial neural networks) in drug design. It also provides a brief overview of the recent progress by the pharmaceutical companies in drug discovery by associating with different AI companies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
正直的念梦完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
忧郁夜天发布了新的文献求助10
3秒前
自信的坤完成签到,获得积分10
4秒前
duohao2023发布了新的文献求助10
5秒前
5秒前
晓晓完成签到,获得积分10
6秒前
tsngl发布了新的文献求助10
6秒前
jbhb发布了新的文献求助10
7秒前
MOMO完成签到 ,获得积分10
8秒前
晓晓发布了新的文献求助10
9秒前
Doki发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
letter发布了新的文献求助10
10秒前
Lotuslab发布了新的文献求助10
11秒前
12秒前
13秒前
15秒前
顾矜应助小淇采纳,获得10
16秒前
张大忽悠发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
SICHEN完成签到,获得积分10
20秒前
WW完成签到 ,获得积分10
20秒前
caizx发布了新的文献求助30
21秒前
sen完成签到,获得积分10
21秒前
匡匡发布了新的文献求助10
21秒前
淡定蓝发布了新的文献求助10
22秒前
22秒前
啊啊啊哦哦哦完成签到,获得积分10
23秒前
23秒前
25秒前
搜集达人应助Change_Jing采纳,获得10
25秒前
景景景完成签到,获得积分10
26秒前
26秒前
caizx完成签到,获得积分10
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978025
求助须知:如何正确求助?哪些是违规求助? 3522174
关于积分的说明 11211799
捐赠科研通 3259432
什么是DOI,文献DOI怎么找? 1799614
邀请新用户注册赠送积分活动 878477
科研通“疑难数据库(出版商)”最低求助积分说明 806918