Fault diagnosis method for sucker rod well with few shots based on meta-transfer learning

抽油杆 计算机科学 学习迁移 元学习(计算机科学) 人工智能 超参数 过程(计算) 过度拟合 机器学习 领域(数学) 油井 工程类 石油工程 人工神经网络 数学 系统工程 纯数学 任务(项目管理) 操作系统
作者
Kai Zhang,Qiang Wang,Lingbo Wang,Huaqing Zhang,Liming Zhang,Jun Yao,Yongfei Yang
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier BV]
卷期号:212: 110295-110295 被引量:39
标识
DOI:10.1016/j.petrol.2022.110295
摘要

In the actual production process of the oil field, the functionality of the oil well pumps will be negatively affected by many factors such as manufacturing quality, installation quality, sand, wax, water, gas, heavy oil, and corrosion, which will cause great loss to the production. Therefore, it is very important to analyze the working conditions of the rod pumping systems. In actual oilfield production, the working conditions of deep well pumps are analyzed based on the measured surface indicator diagrams. However, traditional computer diagnosis of pumping wells relies on necessary mathematical methods, or deep networks with many parameters. These methods require a lot of data, with complex analysis processes, long testing time and low efficiency. This article studies the application of meta-transfer learning in the diagnosis of rod pump wells in few-shot scenarios. Meta-transfer learning combines the advantages of both meta-learning and transfer learning. It can not only provide good initial parameters for learners based on deeper networks through the pre-training stage of transfer learning, but also achieve automatic adjustment of hyperparameters with the help of meta-learning. This enables fast gradient iteration and reduces the probability of overfitting, thereby improving model performance. We also conduct comparative experiments to compare the experimental performance of this method with classical meta-learning methods and deep convolutional networks on the classification problem of indicator diagrams. According to the experimental results, the accuracy rate of meta-transfer learning in the diagnosis of few-shot working conditions in practical problems is close to 80%, which is better than the 70% accuracy rate of the comparative experiments. In the actual oil field, there are not many indicator diagrams for pumping unit diagnosis, so this method can well meet the needs of fault detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lingzi1015发布了新的文献求助10
刚刚
CipherSage应助lilil采纳,获得30
1秒前
1秒前
daidai发布了新的文献求助10
1秒前
Mr_cristle发布了新的文献求助10
1秒前
1秒前
momomo完成签到,获得积分10
1秒前
2秒前
CodeCraft应助那就来吧采纳,获得10
2秒前
2秒前
吱吱吱发布了新的文献求助10
3秒前
jingwen发布了新的文献求助10
3秒前
大猪完成签到 ,获得积分10
3秒前
青蓝完成签到,获得积分10
3秒前
4秒前
Lee发布了新的文献求助10
4秒前
几星霜完成签到,获得积分10
4秒前
李健应助失眠万仇采纳,获得10
4秒前
濮阳灵竹发布了新的文献求助10
4秒前
WTTTTTFFFFFF完成签到 ,获得积分10
4秒前
wanci应助珊珊采纳,获得10
4秒前
fz关闭了fz文献求助
5秒前
6秒前
小小完成签到 ,获得积分10
6秒前
好运来发布了新的文献求助10
7秒前
百合子发布了新的文献求助10
7秒前
哈哈哈发布了新的文献求助10
7秒前
陈辉发布了新的文献求助10
7秒前
8秒前
彪壮的火车完成签到,获得积分10
8秒前
典雅的依云完成签到,获得积分20
9秒前
9秒前
cmuwinni发布了新的文献求助10
10秒前
搜集达人应助jingwen采纳,获得10
10秒前
10秒前
10秒前
妹妹发布了新的文献求助10
11秒前
叶小文完成签到,获得积分10
11秒前
12秒前
h海风完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5026235
求助须知:如何正确求助?哪些是违规求助? 4262879
关于积分的说明 13287733
捐赠科研通 4070602
什么是DOI,文献DOI怎么找? 2226401
邀请新用户注册赠送积分活动 1234970
关于科研通互助平台的介绍 1158925