Automatic Liver Tumor Segmentation on Dynamic Contrast Enhanced MRI Using 4D Information: Deep Learning Model Based on 3D Convolution and Convolutional LSTM

分割 人工智能 计算机科学 深度学习 卷积(计算机科学) 模式识别(心理学) 图像分割 豪斯多夫距离 磁共振成像 计算机视觉 放射科 医学 人工神经网络
作者
Rencheng Zheng,Qidong Wang,Shuangzhi Lv,Cuiping Li,Chengyan Wang,Weibo Chen,He Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (10): 2965-2976 被引量:64
标识
DOI:10.1109/tmi.2022.3175461
摘要

Objective: Accurate segmentation of liver tumors, which could help physicians make appropriate treatment decisions and assess the effectiveness of surgical treatment, is crucial for the clinical diagnosis of liver cancer. In this study, we propose a 4-dimensional (4D) deep learning model based on 3D convolution and convolutional long short-term memory (C-LSTM) for hepatocellular carcinoma (HCC) lesion segmentation. Methods: The proposed deep learning model utilizes 4D information on dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) images to assist liver tumor segmentation. Specifically, a shallow U-net based 3D CNN module was designed to extract 3D spatial domain features from each DCE phase, followed by a 4-layer C-LSTM network module for time domain information exploitation. The combined information of multi-phase DCE images and the manner by which tissue imaging features change on multi-contrast images allow the network to more effectively learn the characteristics of HCC, resulting in better segmentation performance. Results: The proposed model achieved a Dice score of 0.825± 0.077, a Hausdorff distance of 12.84± 8.14 mm, and a volume similarity of 0.891± 0.080 for liver tumor segmentation, which outperformed the 3D U-net model, RA-UNet model and other models in the ablation study in both internal and external test sets. Moreover, the performance of the proposed model is comparable to the nnU-Net model, which showed state-of-the-art performance in many segmentation tasks, with significantly reduced prediction time. Conclusion: The proposed 3D convolution and C-LSTM based model can achieve accurate segmentation of HCC lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Grin完成签到,获得积分10
1秒前
qiqi完成签到,获得积分10
1秒前
丘比特应助mw采纳,获得50
1秒前
小平发布了新的文献求助10
1秒前
壮观的若之完成签到,获得积分20
1秒前
要苦就苦别人完成签到,获得积分10
2秒前
2秒前
ooo娜发布了新的文献求助10
2秒前
mai发布了新的文献求助30
3秒前
3秒前
Apple完成签到,获得积分10
3秒前
3秒前
4秒前
doudou发布了新的文献求助10
5秒前
意意发布了新的文献求助20
5秒前
5秒前
大模型应助木瓜采纳,获得10
7秒前
段段发布了新的文献求助10
7秒前
8秒前
只只发布了新的文献求助10
8秒前
ding应助肿瘤柳叶刀采纳,获得10
9秒前
wang0626完成签到 ,获得积分10
10秒前
想读博的圆圆脸完成签到,获得积分10
10秒前
土拨鼠发布了新的文献求助10
10秒前
政政勇闯世界完成签到,获得积分10
11秒前
kkkkk发布了新的文献求助10
11秒前
烂漫的沂完成签到 ,获得积分10
11秒前
12秒前
aaaaaa发布了新的文献求助10
12秒前
12秒前
setfgrew发布了新的文献求助30
12秒前
ZhaoYu完成签到,获得积分10
12秒前
科研通AI2S应助Ruiruirui采纳,获得10
13秒前
kjh完成签到,获得积分10
13秒前
13秒前
高级后勤完成签到,获得积分10
14秒前
14秒前
东郭凝蝶完成签到 ,获得积分10
14秒前
xwj发布了新的文献求助10
15秒前
天天快乐应助北北采纳,获得10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790327
求助须知:如何正确求助?哪些是违规求助? 3334999
关于积分的说明 10273058
捐赠科研通 3051472
什么是DOI,文献DOI怎么找? 1674703
邀请新用户注册赠送积分活动 802741
科研通“疑难数据库(出版商)”最低求助积分说明 760846