Using Natural Language Processing to Read Plans

计算机科学 工具箱 规划师 人工智能 数据科学 弹性(材料科学) 主题模型 自然语言处理 钥匙(锁) 机器学习 计算机安全 热力学 物理 程序设计语言
作者
Xinyu Fu,Chaosu Li,Wei Zhai
出处
期刊:Journal of The American Planning Association [Taylor & Francis]
卷期号:89 (1): 107-119 被引量:18
标识
DOI:10.1080/01944363.2022.2038659
摘要

Problem, research strategy, and findings Planners need to read plans to learn and adapt current practice. Planners may struggle to find time to read and study lengthy planning documents, especially in emerging areas such as climate change and urban resilience. Recently, natural language processing (NLP) has shown promise in processing big textual data. We asked whether planners could use NLP techniques to more efficiently extract useful and reliable information from planning documents. By analyzing 78 resilience plans from the 100 Resilient Cities Network, we found that results generated from topic modeling, which is an NLP technique, coincided to a large extent (80%) with those from the conventional content analysis approach. Topic modeling was generally effective and efficient in extracting the main information of plans, whereas the content analysis approach could find more in-depth details but at the expense of considerable time and effort. We further propose a transferrable model for cutting-edge planners to more efficiently read and study a large collection of plans using machine learning. Our methodology has limitations: Both topic modeling and content analysis can be subject to human bias and generate unreliable results; NLP text processing techniques may create inaccurate results due to their specific method limitations; and the transferable approach can be only applied to big textual data where there are enough sufficiently long documents.Takeaway for practice NLP represents a valuable addition to the planner's toolbox. Topic modeling coupled with other NLP techniques can help planners to effectively discover key topics in plans, identify planning priorities and plans of specific emphasis, and find relevant policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
喜悦发布了新的文献求助10
1秒前
1秒前
益生益生完成签到 ,获得积分10
1秒前
2秒前
英姑应助7123采纳,获得10
2秒前
Asdaf完成签到,获得积分10
3秒前
Alger发布了新的文献求助10
4秒前
5秒前
咚咚完成签到,获得积分10
5秒前
仲夏发布了新的文献求助10
5秒前
LeuinPonsgi完成签到,获得积分10
6秒前
smart完成签到,获得积分10
6秒前
谈笑间应助傲娇的烨霖采纳,获得10
6秒前
Hello应助鳗鱼没采纳,获得10
7秒前
喜屿完成签到 ,获得积分10
7秒前
3210592完成签到,获得积分10
7秒前
852应助现在的人龙采纳,获得10
9秒前
9秒前
矿泉水完成签到 ,获得积分10
10秒前
科研通AI2S应助千葉采纳,获得10
10秒前
10秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
所所应助Zj采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
ding应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345153
关于积分的说明 10323869
捐赠科研通 3061736
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807113
科研通“疑难数据库(出版商)”最低求助积分说明 763462