A comprehensively optimized lithium-ion battery state-of-health estimator based on Local Coulomb Counting Curve

健康状况 计算机科学 估计员 可靠性(半导体) 过程(计算) 电池(电) 数学 功率(物理) 统计 物理 量子力学 操作系统
作者
Huanyang Huang,Jinhao Meng,Yuhong Wang,Fei Feng,Lei Cai,Jichang Peng,Tianqi Liu
出处
期刊:Applied Energy [Elsevier]
卷期号:322: 119469-119469 被引量:38
标识
DOI:10.1016/j.apenergy.2022.119469
摘要

Accurate State-of-Health (SOH) is critical to ensure the safe operation of Lithium-ion (Li-ion) batteries in electrified transportation and energy storage applications. The data-driven method is expected to greatly improve the SOH estimation in many aspects, thanks to the internet of things technology nowadays. Considering it is difficult to obtain valid information in real applications, efficient features and reasonable training procedures are two main points for establishing a superior data-driven SOH estimator. Thus, this paper proposes a comprehensive optimization framework for Li-ion battery SOH estimation with the Local Coulomb Counting Curve (LCCC), enabling both efficient feature extraction and good accuracy. Without the necessity of any complex calculations and smooth techniques, the LCCC in this work can be conveniently obtained by counting the coulomb amount of a specified voltage segment. After unifying the estimation accuracy and feature collection difficulty into one objective function, the Genetic Algorithm (GA) is utilized to optimize the LCCC selection and training procedure of the Gaussian Regression Process (GPR) further. Eight LiFePO4 batteries cycled under four different current rates aging conditions are selected for validation. The proposed estimator achieves root mean squared errors of 0.7745%, 1.0837%, 0.7208%, and 1.5795%, respectively, and optimized features can be collected within 300mV. Such results prove that the proposed method can achieve a good SOH estimation accuracy with fewer LCCC features and higher computing efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助淡淡碧玉采纳,获得10
刚刚
无限的妙柏关注了科研通微信公众号
刚刚
1秒前
斯文败类应助刻苦牛马采纳,获得10
1秒前
Seven完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
不辍完成签到,获得积分10
3秒前
科研通AI2S应助杨杨采纳,获得10
3秒前
3秒前
一针超人发布了新的文献求助10
4秒前
包容的豆芽完成签到,获得积分10
5秒前
5秒前
清新的沛蓝完成签到,获得积分10
5秒前
寻道图强应助友好盼晴采纳,获得50
8秒前
搜集达人应助炸毛小鱼采纳,获得30
8秒前
8秒前
8秒前
hhh涵完成签到,获得积分10
9秒前
研友_Y59685发布了新的文献求助10
9秒前
彭于晏应助momo采纳,获得30
9秒前
sekun完成签到,获得积分20
9秒前
那时花开应助wawu采纳,获得10
9秒前
123发布了新的文献求助10
9秒前
Orange应助KD采纳,获得10
10秒前
10秒前
Mic应助好人一生平安喵采纳,获得10
10秒前
好运6连完成签到,获得积分10
11秒前
hs完成签到,获得积分10
12秒前
NexusExplorer应助刚子采纳,获得10
12秒前
w倾应助wwhh采纳,获得30
12秒前
13秒前
fcyyc发布了新的文献求助10
14秒前
wjx发布了新的文献求助10
14秒前
sdniuidifod发布了新的文献求助30
14秒前
希格玻色子完成签到,获得积分10
15秒前
sunbigfly完成签到,获得积分10
15秒前
16秒前
好运6连发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472385
求助须知:如何正确求助?哪些是违规求助? 4574678
关于积分的说明 14347789
捐赠科研通 4502046
什么是DOI,文献DOI怎么找? 2466815
邀请新用户注册赠送积分活动 1454881
关于科研通互助平台的介绍 1429206