氢甲酰化
化学
位阻效应
磷化氢
计算化学
数量结构-活动关系
齿合度
自然键轨道
铑
催化作用
立体化学
密度泛函理论
有机化学
晶体结构
作者
Jie Wei,Maoshuai Li,Jie Ding,Weikang Dai,Qi Yang,Yi Feng,Cheng Yang,Wanxin Yang,Ying Zheng,Meiyan Wang,Xinbin Ma
出处
期刊:Chemcatchem
[Wiley]
日期:2022-06-22
卷期号:14 (16)
被引量:5
标识
DOI:10.1002/cctc.202200423
摘要
Abstract This study has established the quantitative structure‐activity relationship (QSAR) model to predict formaldehyde hydroformylation activity using a class of phosphine‐Rh complexes and computational mechanistic pathway analysis. A group of computational parameters (e. g., cone angle, G‐parameter, buried volume, CO vibration frequency, NBO charge, HOMO and LUMO energy, Rh−P distance) describing the complex structural (e. g., steric and electronic) features were achieved for descriptor database of monodentate phosphine ligands. Mathematical modelling of the catalytic results with the descriptors via multivariate linear regression reveals the hydroformylation rate is principally under electronic control within the investigated ligands. Computational mechanistic analysis demonstrates significant impact of electronic feature on TOF‐determining transition state/intermediate and energetic span. The H 2 distortion energy analysis elucidates the variation of energetic span of the transition states related to H 2 oxidation addition, rationally accounting for the reaction outcomes.
科研通智能强力驱动
Strongly Powered by AbleSci AI