In silico prediction of chemical aquatic toxicity by multiple machine learning and deep learning approaches

机器学习 人工智能 计算机科学 小鱼 深度学习 生物信息学 适用范围 生物 数量结构-活动关系 渔业 生物化学 基因
作者
Minjie Xu,Hongbin Yang,Guixia Liu,Yun Tang,Weihua Li
出处
期刊:Journal of Applied Toxicology [Wiley]
卷期号:42 (11): 1766-1776 被引量:10
标识
DOI:10.1002/jat.4354
摘要

Abstract Fish is one of the model animals used to evaluate the adverse effects of a chemical exposed to the ecosystem. However, its low throughput and relevantly high expense make it impossible to test all new chemicals in manufacture. Hence, using in silico models to prioritize compounds to be tested has been widely applied in environmental risk assessment and drug discovery. In this study, we constructed the local predictive models for four fish species, including bluegill sunfish, rainbow trout, fathead minnow, and sheepshead minnow, and the global models with all four fish data. A total of 1874 unique compounds with their labels, that is, toxic (LC 50 < 10 ppm) or nontoxic, were collected from ECOTOX and literature. Both conventional machine learning methods and the deep learning architecture, graph convolutional network (GCN), were used to build predictive models. The classification accuracy of the best local model for each fish species was higher than 0.83. For the global models, two strategies including consistency prediction and probability threshold were adopted to improve the predictive capability at the cost of limiting applicability domain. For 63% of compounds in domain, the accuracy was around 0.97. By comparison of the deep learning and machine learning methods, we found that the single‐task GCN showed specific advantages in performance, and multitask GCN showed no advantages over the conventional machine learning methods. The data and models are available on GitHub ( https://github.com/ChemPredict/ChemicalAquaticToxicity ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水怪啊发布了新的文献求助10
1秒前
钮祜禄废废完成签到,获得积分10
1秒前
1秒前
善学以致用应助勤恳逍遥采纳,获得10
2秒前
2秒前
2秒前
CH0304发布了新的文献求助10
2秒前
3秒前
格格完成签到,获得积分10
3秒前
4秒前
4秒前
violinsj完成签到,获得积分0
5秒前
6秒前
6秒前
机灵的煎蛋完成签到 ,获得积分10
7秒前
听雨完成签到,获得积分10
7秒前
Think发布了新的文献求助10
7秒前
个性尔白发布了新的文献求助10
7秒前
武琳捷完成签到,获得积分10
7秒前
光亮盼柳发布了新的文献求助10
9秒前
英俊的铭应助yyhh采纳,获得10
9秒前
yier完成签到,获得积分10
9秒前
小巧凝丹发布了新的文献求助10
10秒前
12秒前
zho应助MY采纳,获得10
13秒前
13秒前
13秒前
13秒前
顾矜应助冯123采纳,获得10
14秒前
谨慎紫霜发布了新的文献求助10
14秒前
平常的毛豆应助MeilingLi采纳,获得30
15秒前
善学以致用应助坦率道之采纳,获得10
15秒前
脑洞疼应助cherish采纳,获得10
15秒前
英格兰胖头鱼完成签到 ,获得积分10
15秒前
17秒前
17秒前
123完成签到,获得积分10
17秒前
zhaoxiaonuan发布了新的文献求助10
17秒前
19秒前
科研通AI2S应助感动世倌采纳,获得10
19秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807102
求助须知:如何正确求助?哪些是违规求助? 3351867
关于积分的说明 10356328
捐赠科研通 3067877
什么是DOI,文献DOI怎么找? 1684778
邀请新用户注册赠送积分活动 809910
科研通“疑难数据库(出版商)”最低求助积分说明 765767