A genetic algorithm and backpropagation neural network based temperature compensation method of spin-exchange relaxation-free co-magnetometer

磁强计 反向传播 补偿(心理学) 人工神经网络 材料科学 放松(心理学) 遗传算法 计算机科学 磁场 线性 小型化 电磁屏蔽 算法 物理 计算物理学 电子工程 人工智能 纳米技术 工程类 机器学习 心理学 复合材料 社会心理学 精神分析 量子力学
作者
Feng Liu,Jiaqi Wu,Wei Quan
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:93 (1) 被引量:8
标识
DOI:10.1063/5.0068036
摘要

This paper presents a temperature compensation method based on the genetic algorithm (GA) and backpropagation (BP) neural network to reduce the temperature induced error of the spin-exchange relaxation-free (SERF) co-magnetometer. The fluctuation of the cell temperature results in the variation of the optical rotation angle and the probe light absorption. The temperature fluctuation of the magnetic field shielding layer induces the variation of the magnetic field. In addition, one of the causes of light power variation is temperature fluctuation of the optical element. In summary, temperature fluctuations cause a variety of SERF co-magnetometer errors, and the relationship between these errors and temperature fluctuations has the characteristics of time-variance and non-linearity. There are two kinds of methods to suppress these errors. One way is to reduce temperature fluctuations of the SERF co-magnetometer. However, this method requires additional hardware and high cost, which are not suitable for miniaturization and low cost applications. Another effective method to suppress nonlinear and time-varying errors is to utilize intelligent algorithms for temperature compensation. In this paper, the BP neural network is applied for temperature compensation, and the GA is utilized to overcome the disadvantages of the BP neural network. The training data were obtained by changing the ambient temperature of the SERF co-magnetometer. The experimental results show that the method proposed in this work can significantly improve the accuracy of the co-magnetometer at complex ambient temperatures, and the stability of the SERF co-magnetometer at room temperature can be improved by at least 45%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文败类应助优雅小霜采纳,获得10
1秒前
Hello应助华北走地鸡采纳,获得10
2秒前
li'p完成签到,获得积分10
2秒前
3秒前
在水一方应助小甑采纳,获得10
3秒前
ahsisalah完成签到,获得积分10
4秒前
萝卜丁完成签到 ,获得积分0
5秒前
5秒前
摩根发布了新的文献求助10
6秒前
汐尘完成签到,获得积分10
7秒前
7秒前
pylchm完成签到,获得积分10
7秒前
科研通AI5应助YangRQ采纳,获得10
7秒前
8秒前
XY发布了新的文献求助10
9秒前
LYL应助zxh采纳,获得10
9秒前
外向语蝶完成签到,获得积分20
9秒前
莫小乔斯发布了新的文献求助10
10秒前
盼夏发布了新的文献求助10
10秒前
12秒前
那地方完成签到,获得积分10
12秒前
背后初南完成签到,获得积分10
12秒前
华子黄发布了新的文献求助10
12秒前
GuanguanYaa发布了新的文献求助10
13秒前
13秒前
VDC关闭了VDC文献求助
14秒前
FashionBoy应助pp采纳,获得10
15秒前
钢铁加鲁鲁完成签到,获得积分0
15秒前
15秒前
yangman发布了新的文献求助10
15秒前
如约而至完成签到 ,获得积分10
15秒前
浮生若梦完成签到,获得积分10
15秒前
小屁儿郭发布了新的文献求助10
16秒前
16秒前
shelter关注了科研通微信公众号
16秒前
16秒前
17秒前
17秒前
18秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816929
求助须知:如何正确求助?哪些是违规求助? 3360303
关于积分的说明 10407548
捐赠科研通 3078290
什么是DOI,文献DOI怎么找? 1690694
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767958