False Discovery Rate Control via Data Splitting

错误发现率 计算机科学 数学 数据挖掘 统计 生物 生物化学 基因
作者
Chenguang Dai,Buyu Lin,Xin Xing,Jun S. Liu
标识
DOI:10.1080/01621459.2022.2060113
摘要

Selecting relevant features associated with a given response variable is an important problem in many scientific fields. Quantifying quality and uncertainty of a selection result via false discovery rate (FDR) control has been of recent interest. This article introduces a data-splitting method (referred to as "DS") to asymptotically control the FDR while maintaining a high power. For each feature, DS constructs a test statistic by estimating two independent regression coefficients via data splitting. FDR control is achieved by taking advantage of the statistic's property that, for any null feature, its sampling distribution is symmetric about zero; whereas for a relevant feature, its sampling distribution has a positive mean. Furthermore, a Multiple Data Splitting (MDS) method is proposed to stabilize the selection result and boost the power. Surprisingly, with the FDR under control, MDS not only helps overcome the power loss caused by data splitting, but also results in a lower variance of the false discovery proportion (FDP) compared with all other methods in consideration. Extensive simulation studies and a real-data application show that the proposed methods are robust to the unknown distribution of features, easy to implement and computationally efficient, and are often the most powerful ones among competitors especially when the signals are weak and correlations or partial correlations among features are high. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
haning发布了新的文献求助10
2秒前
麻雀发布了新的文献求助10
2秒前
2秒前
apple发布了新的文献求助10
3秒前
小Q发布了新的文献求助10
3秒前
科研通AI5应助覃雅丽采纳,获得10
3秒前
一座山的风完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
JamesPei应助再夕予采纳,获得10
6秒前
驭剑士发布了新的文献求助10
6秒前
李爱国应助Lucifer采纳,获得10
7秒前
7秒前
wyc发布了新的文献求助10
8秒前
圣晟胜完成签到,获得积分10
8秒前
嵤麈发布了新的文献求助10
8秒前
9秒前
科研通AI2S应助zhuo采纳,获得10
9秒前
梦想发布了新的文献求助10
9秒前
大饼发布了新的文献求助10
9秒前
qunli发布了新的文献求助10
9秒前
9秒前
淡定若完成签到,获得积分10
10秒前
yuyuyu完成签到,获得积分10
10秒前
Nacy发布了新的文献求助10
10秒前
佐zzz完成签到 ,获得积分20
10秒前
小平完成签到,获得积分10
11秒前
北过居庸发布了新的文献求助10
11秒前
KXC2024发布了新的文献求助10
12秒前
南宫丽完成签到 ,获得积分20
12秒前
卫踏歌发布了新的文献求助10
13秒前
顺顺顺顺顺完成签到,获得积分10
13秒前
13秒前
麻雀完成签到,获得积分10
13秒前
达叔完成签到,获得积分10
14秒前
www完成签到 ,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794120
求助须知:如何正确求助?哪些是违规求助? 3339098
关于积分的说明 10293786
捐赠科研通 3055628
什么是DOI,文献DOI怎么找? 1676738
邀请新用户注册赠送积分活动 804705
科研通“疑难数据库(出版商)”最低求助积分说明 762047