Rapid On-site identification of geographical origin and storage age of tangerine peel by Near-infrared spectroscopy

主成分分析 近红外光谱 分光计 线性判别分析 马氏距离 离群值 化学 数据集 平滑的 模式识别(心理学) 异常检测 化学计量学 偏最小二乘回归 聚类分析 分析化学(期刊) 人工智能 生物系统 数学 计算机科学 统计 色谱法 光学 物理 生物
作者
Shaowei Pan,Xin Zhang,Wanbang Xu,Jianwei Yin,Hongyu Gu,Xiangyang Yu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:271: 120936-120936 被引量:59
标识
DOI:10.1016/j.saa.2022.120936
摘要

The feasibility of identifying geographical origin and storage age of tangerine peel was explored by using a handheld near-infrared (NIR) spectrometer combined with machine learning. A handheld NIR spectrometer (900-1700 nm) was used to scan the outer surface of tangerine peel and collect the corresponding NIR diffuse reflectance spectra. Principal component analysis (PCA) combined with Mahalanobis distance were used to detect outliers. The accuracies of all models in the anomaly set were much lower than that in calibration set and test set, indicating that the outliers were effectively identified. After removing the outliers, in order to initially explore the clustering characteristics of tangerine peels, PCA was performed on tangerine peels from different origins and the same origin with different storage ages. The results showed that the tangerine peels from the same origin or the same storage age had the potential to cluster, indicating that the spectral data of the same origin or the same storage age had a certain similarity, which laid the foundation for subsequent modeling and identification. However, there were quite a few samples with different origins or different storage ages overlapped and could not be distinguished from each other. In order to achieve qualitative identification of origin and storage age, Savitzky-Golay convolution smoothing with first derivative (SGFD) and standard normal variate (SNV) were used to preprocess the raw spectra. Random forest (RF), K-nearest neighbor (KNN) and linear discriminant analysis (LDA) were used to establish the discriminant model. The results showed that SGFD-LDA could accurately distinguish the origin and storage age of tangerine peel at the same time. The origin identification accuracy was 96.99%. The storage age identification accuracy was 100% for Guangdong tangerine peel and 97.15% for Sichuan tangerine peel. This indicated that the near-infrared spectroscopy (NIRS) combine with machine learning can simultaneously and rapidly identify the origin and storage age of tangerine peel on site.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XSY完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
1秒前
善学以致用应助麦热穆罕采纳,获得10
1秒前
1秒前
1秒前
科研通AI5应助YE采纳,获得10
2秒前
小太阳发布了新的文献求助10
2秒前
3秒前
杨123完成签到,获得积分10
3秒前
隐形曼青应助小吕采纳,获得10
4秒前
kaziwi给kaziwi的求助进行了留言
4秒前
超级水壶发布了新的文献求助10
4秒前
zhangzhirong发布了新的文献求助10
4秒前
哭泣德地完成签到,获得积分10
4秒前
5秒前
Cici发布了新的文献求助10
5秒前
5秒前
李海阳完成签到,获得积分10
5秒前
6秒前
秀丽菠萝完成签到,获得积分10
6秒前
tomato039完成签到,获得积分10
6秒前
巴哒发布了新的文献求助10
7秒前
施宇宙完成签到,获得积分10
7秒前
Michael发布了新的文献求助10
7秒前
7秒前
ghost发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
怦然心动发布了新的文献求助10
9秒前
zhoujunjie完成签到,获得积分10
10秒前
烟花应助lukescholar采纳,获得10
10秒前
10秒前
ml发布了新的文献求助10
10秒前
10秒前
11秒前
123发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183473
求助须知:如何正确求助?哪些是违规求助? 4369781
关于积分的说明 13607386
捐赠科研通 4221555
什么是DOI,文献DOI怎么找? 2315256
邀请新用户注册赠送积分活动 1313969
关于科研通互助平台的介绍 1262801