Rapid On-site identification of geographical origin and storage age of tangerine peel by Near-infrared spectroscopy

主成分分析 近红外光谱 分光计 线性判别分析 马氏距离 离群值 化学 数据集 平滑的 模式识别(心理学) 异常检测 化学计量学 偏最小二乘回归 聚类分析 分析化学(期刊) 人工智能 生物系统 数学 计算机科学 统计 色谱法 光学 物理 生物
作者
Shaowei Pan,Xin Zhang,Wanbang Xu,Jianwei Yin,Hongyu Gu,Xiangyang Yu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:271: 120936-120936 被引量:50
标识
DOI:10.1016/j.saa.2022.120936
摘要

The feasibility of identifying geographical origin and storage age of tangerine peel was explored by using a handheld near-infrared (NIR) spectrometer combined with machine learning. A handheld NIR spectrometer (900-1700 nm) was used to scan the outer surface of tangerine peel and collect the corresponding NIR diffuse reflectance spectra. Principal component analysis (PCA) combined with Mahalanobis distance were used to detect outliers. The accuracies of all models in the anomaly set were much lower than that in calibration set and test set, indicating that the outliers were effectively identified. After removing the outliers, in order to initially explore the clustering characteristics of tangerine peels, PCA was performed on tangerine peels from different origins and the same origin with different storage ages. The results showed that the tangerine peels from the same origin or the same storage age had the potential to cluster, indicating that the spectral data of the same origin or the same storage age had a certain similarity, which laid the foundation for subsequent modeling and identification. However, there were quite a few samples with different origins or different storage ages overlapped and could not be distinguished from each other. In order to achieve qualitative identification of origin and storage age, Savitzky-Golay convolution smoothing with first derivative (SGFD) and standard normal variate (SNV) were used to preprocess the raw spectra. Random forest (RF), K-nearest neighbor (KNN) and linear discriminant analysis (LDA) were used to establish the discriminant model. The results showed that SGFD-LDA could accurately distinguish the origin and storage age of tangerine peel at the same time. The origin identification accuracy was 96.99%. The storage age identification accuracy was 100% for Guangdong tangerine peel and 97.15% for Sichuan tangerine peel. This indicated that the near-infrared spectroscopy (NIRS) combine with machine learning can simultaneously and rapidly identify the origin and storage age of tangerine peel on site.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
豌豆发布了新的文献求助10
1秒前
我是老大应助乐观的雁兰采纳,获得10
3秒前
小萝卜发布了新的文献求助10
3秒前
纯真皮卡丘完成签到 ,获得积分10
6秒前
小二郎应助豌豆采纳,获得10
6秒前
8秒前
PHY完成签到,获得积分10
10秒前
坚定的之卉完成签到,获得积分10
10秒前
Lucas应助dyh采纳,获得10
13秒前
llg发布了新的文献求助10
15秒前
小白发布了新的文献求助10
15秒前
bc应助安详的惜梦采纳,获得10
15秒前
17秒前
风中小懒虫完成签到,获得积分10
17秒前
舒心的泥猴桃完成签到,获得积分10
22秒前
bc应助小白采纳,获得10
28秒前
bc应助小白采纳,获得10
28秒前
科研通AI5应助小白采纳,获得30
28秒前
灰灰喵完成签到 ,获得积分10
30秒前
33秒前
小马甲应助赵文若采纳,获得10
35秒前
hs发布了新的文献求助10
40秒前
打打应助科研通管家采纳,获得10
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
Hello应助科研通管家采纳,获得10
41秒前
冰魂应助科研通管家采纳,获得10
41秒前
共享精神应助科研通管家采纳,获得10
41秒前
充电宝应助科研通管家采纳,获得10
42秒前
在水一方应助科研通管家采纳,获得10
42秒前
华仔应助科研通管家采纳,获得10
42秒前
wanci应助科研通管家采纳,获得10
42秒前
传奇3应助科研通管家采纳,获得30
42秒前
NexusExplorer应助科研通管家采纳,获得10
42秒前
NexusExplorer应助科研通管家采纳,获得10
42秒前
42秒前
44秒前
45秒前
科研通AI5应助wankai采纳,获得10
46秒前
JlkD完成签到,获得积分10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778812
求助须知:如何正确求助?哪些是违规求助? 3324352
关于积分的说明 10218073
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758437