Hybrid optimization approach using evolutionary neural network & genetic algorithm in a real-world waterflood development

数学优化 水准点(测量) 遗传算法 趋同(经济学) 多目标优化 人工神经网络 人口 油田 计算机科学 工程类 算法 数学 人工智能 石油工程 社会学 人口学 经济 经济增长 地理 大地测量学
作者
Mohammed Al-Aghbari,Ashish M. Gujarathi
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier BV]
卷期号:216: 110813-110813 被引量:18
标识
DOI:10.1016/j.petrol.2022.110813
摘要

The hybrid optimization method of using evolutionary neural network (EvoNN) and NSGA-II algorithms is applied in two case studies. The first optimization study is applied in a benchmark model of the Brugge field consisting of 20 oil producers and 10 water injectors. The two objective functions are defined as maximizing short-term net present value (NPVS) and maximizing long-term NPV (NPVL). The second study is applied to a sector model of a Middle Eastern oil field developed by waterflooding to maximize cumulative oil production and minimize cumulative water production. The real field sector model consists of four producers and three injectors and it is run for ten years with 20 time steps. Bottom-hole pressure (BHP) for producers and water injection rates (qwi) for injectors are the decision variables used in the two studies. EvoNN data-driven model is based on the predator-prey genetic algorithm used in the training and optimization of the data. The optimization results obtained by the EvoNN algorithm are then used as guiding input in the NSGA-II optimization to re-initialize the population. Overall, the Pareto optimal solution obtained by the EvoNN guided NSGA-II has a more optimal solution with better convergence and diversity compared to the NSGA-II solution. The hybrid approach of using EvoNN guided NSGA-II resulted in a 70% improvement in the convergence and the computation demand for the Brugge field model. For the real field sector model, EvoNN guided NSGA-II algorithm resulted in a better convergence obtained at all generations compared to the NSGA-II algorithm solution. The maximum total oil production determined by EvoNN guided NSGA-II is 550.6 Mm3 compared to 522 Mm3 by NSGA-II. Water oil ratio (WOR) is reduced with lower water production obtained by the EvoNN guided NSGA-II algorithm compared to the NSGA-II algorithm. The best optimal solution from the EvoNN guided NSGA-II optimization for the real field sector is determined by the net flow method (NFM) at 521.25 Mm3 oil and 5208.6 Mm3water. The Pareto optimal solutions obtained by the EvoNN guided NSGA-II algorithm provide multiple optimum solutions for the decision-maker to manage the production and injection of the wells in the waterflood development based on the requirements and operational conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
性感的不二家关注了科研通微信公众号
2秒前
共享精神应助ty采纳,获得10
3秒前
gusgusgus完成签到,获得积分10
3秒前
香蕉觅云应助gougoutu采纳,获得10
4秒前
4秒前
宋静发布了新的文献求助10
5秒前
云不暇完成签到 ,获得积分10
5秒前
白糖完成签到,获得积分10
6秒前
EasonLi发布了新的文献求助10
6秒前
9秒前
花开无声完成签到,获得积分10
12秒前
安然完成签到,获得积分10
13秒前
dyc完成签到,获得积分10
16秒前
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
昔年若许完成签到,获得积分10
19秒前
Hanah发布了新的文献求助10
20秒前
ty发布了新的文献求助10
24秒前
Max完成签到,获得积分10
26秒前
Condor完成签到,获得积分10
27秒前
29秒前
灯灯发布了新的文献求助20
31秒前
33秒前
33秒前
Ldq发布了新的文献求助10
35秒前
38秒前
香蕉觅云应助yangchunting采纳,获得10
38秒前
39秒前
39秒前
Erin完成签到 ,获得积分10
40秒前
45秒前
乔恩完成签到,获得积分10
46秒前
高灵雨发布了新的文献求助10
47秒前
乐乐应助to高坚果采纳,获得10
48秒前
细心的代天完成签到 ,获得积分10
50秒前
微笑的寒梦完成签到,获得积分10
50秒前
shiyixiao发布了新的文献求助30
51秒前
51秒前
53秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977846
求助须知:如何正确求助?哪些是违规求助? 3521988
关于积分的说明 11210995
捐赠科研通 3259220
什么是DOI,文献DOI怎么找? 1799562
邀请新用户注册赠送积分活动 878412
科研通“疑难数据库(出版商)”最低求助积分说明 806888