Hybrid optimization approach using evolutionary neural network & genetic algorithm in a real-world waterflood development

数学优化 水准点(测量) 遗传算法 趋同(经济学) 多目标优化 人工神经网络 人口 油田 计算机科学 工程类 算法 数学 人工智能 石油工程 社会学 人口学 经济 经济增长 地理 大地测量学
作者
Mohammed Al-Aghbari,Ashish M. Gujarathi
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:216: 110813-110813 被引量:18
标识
DOI:10.1016/j.petrol.2022.110813
摘要

The hybrid optimization method of using evolutionary neural network (EvoNN) and NSGA-II algorithms is applied in two case studies. The first optimization study is applied in a benchmark model of the Brugge field consisting of 20 oil producers and 10 water injectors. The two objective functions are defined as maximizing short-term net present value (NPVS) and maximizing long-term NPV (NPVL). The second study is applied to a sector model of a Middle Eastern oil field developed by waterflooding to maximize cumulative oil production and minimize cumulative water production. The real field sector model consists of four producers and three injectors and it is run for ten years with 20 time steps. Bottom-hole pressure (BHP) for producers and water injection rates (qwi) for injectors are the decision variables used in the two studies. EvoNN data-driven model is based on the predator-prey genetic algorithm used in the training and optimization of the data. The optimization results obtained by the EvoNN algorithm are then used as guiding input in the NSGA-II optimization to re-initialize the population. Overall, the Pareto optimal solution obtained by the EvoNN guided NSGA-II has a more optimal solution with better convergence and diversity compared to the NSGA-II solution. The hybrid approach of using EvoNN guided NSGA-II resulted in a 70% improvement in the convergence and the computation demand for the Brugge field model. For the real field sector model, EvoNN guided NSGA-II algorithm resulted in a better convergence obtained at all generations compared to the NSGA-II algorithm solution. The maximum total oil production determined by EvoNN guided NSGA-II is 550.6 Mm3 compared to 522 Mm3 by NSGA-II. Water oil ratio (WOR) is reduced with lower water production obtained by the EvoNN guided NSGA-II algorithm compared to the NSGA-II algorithm. The best optimal solution from the EvoNN guided NSGA-II optimization for the real field sector is determined by the net flow method (NFM) at 521.25 Mm3 oil and 5208.6 Mm3water. The Pareto optimal solutions obtained by the EvoNN guided NSGA-II algorithm provide multiple optimum solutions for the decision-maker to manage the production and injection of the wells in the waterflood development based on the requirements and operational conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Echo完成签到,获得积分10
1秒前
阿璟完成签到,获得积分10
1秒前
lmyycl发布了新的文献求助10
1秒前
格格巫发布了新的文献求助10
1秒前
1秒前
qc应助贤惠的高山采纳,获得10
3秒前
3秒前
4秒前
4秒前
乐乐应助XD采纳,获得10
5秒前
5秒前
6秒前
6秒前
MGQQbg发布了新的文献求助10
6秒前
6秒前
科研通AI6应助gmy采纳,获得10
6秒前
大蜜蜂发布了新的文献求助10
7秒前
徐5V完成签到,获得积分10
7秒前
8秒前
不想上班发布了新的文献求助10
8秒前
飘逸怜菡发布了新的文献求助10
9秒前
小星星发布了新的文献求助10
9秒前
大胆迎松完成签到,获得积分10
9秒前
细致且入微完成签到,获得积分10
9秒前
9秒前
阿光发布了新的文献求助10
9秒前
饱满含玉完成签到,获得积分10
9秒前
筷子吃不了面完成签到,获得积分10
10秒前
yuancw完成签到 ,获得积分10
12秒前
13秒前
downbad发布了新的文献求助10
13秒前
江逾白发布了新的文献求助10
13秒前
多多发布了新的文献求助10
13秒前
14秒前
隐形曼青应助大蜜蜂采纳,获得10
14秒前
宁宁发布了新的文献求助10
14秒前
活泼映阳完成签到,获得积分20
15秒前
万能图书馆应助zkl采纳,获得10
18秒前
乐乐应助不去的新采纳,获得10
18秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339456
求助须知:如何正确求助?哪些是违规求助? 4476253
关于积分的说明 13930947
捐赠科研通 4371718
什么是DOI,文献DOI怎么找? 2402066
邀请新用户注册赠送积分活动 1395009
关于科研通互助平台的介绍 1366964