A Machine-Learning Approach for the Reconstruction of Ground-Shaking Fields in Real Time

震级(天文学) 计算机科学 算法 噪音(视频) 领域(数学) 卷积神经网络 数据挖掘 人工智能 数学 天文 图像(数学) 物理 纯数学
作者
Simone Francesco Fornasari,Veronica Pazzi,Giovanni Costa
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society of America]
卷期号:112 (5): 2642-2652 被引量:6
标识
DOI:10.1785/0120220034
摘要

ABSTRACT Real-time seismic monitoring is of primary importance for rapid and targeted emergency operations after potentially destructive earthquakes. A key aspect in determining the impact of an earthquake is the reconstruction of the ground-shaking field, usually expressed as the ground-motion parameter. Traditional algorithms compute the ground-shaking field from the punctual data at the stations relying on ground-motion prediction equations computed on estimates of the earthquake location and magnitude when the instrumental data are missing. The results of such algorithms are then subordinate to the evaluation of location and magnitude, which can take several minutes. To fill the temporal gap between the arrival of the data and the estimate of these parameters, a new data-driven algorithm that exploits the information from the station data only is introduced. This algorithm, consisting of an ensemble of convolutional neural networks (CNNs) trained on a database of ground-shaking maps produced with traditional algorithms, can provide estimates of the ground-shaking maps and their associated uncertainties in real time. Because CNNs cannot handle sparse data, a Voronoi tessellation of a selected peak ground parameter recorded at the stations is computed and used as the input to the CNNs; site effects and network geometry are accounted for using a (normalized) VS30 map and a station location map, respectively. The developed method is robust to noise, can handle network geometry changes over time without the need for retraining, and can resolve multiple simultaneous events. Although having a lower resolution, the results obtained are statistically compatible with the ones from traditional methods. A fully operational version of the algorithm is running on the servers at the Department of Mathematics and Geosciences of the University of Trieste, showing real-time capabilities in handling stations from multiple Italian strong-motion networks and outputting results with a resolution of 0.05° × 0.05°.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Suagy发布了新的文献求助10
2秒前
wangmengcheng完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助50
4秒前
5秒前
你爱我我爱你完成签到,获得积分10
6秒前
Yahyah完成签到,获得积分10
6秒前
mmol发布了新的文献求助10
6秒前
1s发布了新的文献求助10
6秒前
FashionBoy应助林白采纳,获得30
7秒前
浮游应助上好佳采纳,获得10
7秒前
7秒前
yue完成签到,获得积分10
8秒前
阔达月亮完成签到,获得积分10
8秒前
9秒前
10秒前
真的不想干活了完成签到,获得积分10
13秒前
tsai完成签到,获得积分10
13秒前
xiaosun发布了新的文献求助30
14秒前
1s完成签到,获得积分10
15秒前
17秒前
17秒前
18秒前
18秒前
乌鸦坐飞机完成签到,获得积分10
18秒前
思源应助mmol采纳,获得10
18秒前
19秒前
wwyy应助无心的仙人掌采纳,获得10
19秒前
log完成签到,获得积分10
19秒前
JamesPei应助单身的凡雁采纳,获得10
20秒前
江逾白发布了新的文献求助10
21秒前
啊强完成签到 ,获得积分10
21秒前
默默鞋子发布了新的文献求助10
22秒前
Rez完成签到,获得积分10
23秒前
23秒前
bearhong发布了新的文献求助10
24秒前
CipherSage应助天天开心采纳,获得10
24秒前
24秒前
zhzzhz完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4862198
求助须知:如何正确求助?哪些是违规求助? 4156214
关于积分的说明 12883915
捐赠科研通 3908179
什么是DOI,文献DOI怎么找? 2146981
邀请新用户注册赠送积分活动 1165858
关于科研通互助平台的介绍 1068033