Driving Risk and Intervention: Subjective Risk Lane Change Dataset

更安全的 计算机科学 干预(咨询) 心理干预 驾驶模拟器 人机交互 模拟 计算机安全 心理学 精神科
作者
Naren Bao,Alexander Carballo,Kazuya Takeda
标识
DOI:10.1109/iv51971.2022.9827358
摘要

When developing truly driverless mobility for the future, one key index used to measure the matureness of a particular self-driving technology is the driver intervention rate. One method which has proven to be effective for decreasing intervention rates is the use of personalized driving models that can mimic the driving style and preferences of a targeted user, so that autonomous driving feels safer and more natural to them. To create such models, quantitative data should be collected from users in order to determine the style of driving that a particular user, or type of user, prefers. In this paper, we introduce the Subjective Risk Lane Change (SRLC) Dataset, which includes ego vehicle driving behavior data, surrounding vehicle location information, and the subjective risk scores of users, collected during both safe and risky lane change scenarios encountered in CARLA simulators, as well as demographic information for our 30 participants. Furthermore, user intervention data for all of our participants was collected from Personalized Model Predictive Controllers during the generated lane change maneuvers. As far as the authors are able to determine, no other public dataset provides driving behavior signal and intervention timing information collected during driver interventions. Our dataset can be used to gain insights into a variety of personal driving styles, allowing the improvement of adaptive autonomous driving systems, and leading to safer and more widely accepted driverless technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脆脆鲨完成签到,获得积分10
刚刚
整齐的dy完成签到,获得积分20
刚刚
春鸮鸟完成签到 ,获得积分10
1秒前
大秦发布了新的文献求助10
1秒前
miaogm完成签到,获得积分10
1秒前
研友_LX66qZ完成签到,获得积分10
2秒前
果汁儿完成签到 ,获得积分10
2秒前
3秒前
所所应助Junior采纳,获得10
3秒前
4秒前
爆米花应助DADing采纳,获得20
4秒前
MN1完成签到,获得积分10
4秒前
范嘻嘻发布了新的文献求助10
5秒前
5秒前
6秒前
甜蜜冰珍完成签到,获得积分20
7秒前
充电宝应助从容的鲜花采纳,获得10
7秒前
7秒前
hesongheng发布了新的文献求助10
8秒前
8秒前
taoli完成签到,获得积分10
8秒前
9秒前
lemon发布了新的文献求助10
9秒前
江川锦鲤完成签到,获得积分10
9秒前
二十完成签到 ,获得积分10
9秒前
10秒前
10秒前
可爱的函函应助康康星采纳,获得10
11秒前
小木虫完成签到,获得积分10
11秒前
热呃呃呃发布了新的文献求助10
11秒前
12秒前
jiayou完成签到,获得积分10
12秒前
嗯嗯完成签到,获得积分10
12秒前
12秒前
华仔应助科研通管家采纳,获得10
12秒前
壮观的夏云完成签到,获得积分10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
ding应助科研通管家采纳,获得10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834344
求助须知:如何正确求助?哪些是违规求助? 3376864
关于积分的说明 10495644
捐赠科研通 3096375
什么是DOI,文献DOI怎么找? 1704930
邀请新用户注册赠送积分活动 820309
科研通“疑难数据库(出版商)”最低求助积分说明 771966