Migrating Deep Learning Data and Applications among Kubernetes Edge Nodes

计算机科学 有状态防火墙 节点(物理) GSM演进的增强数据速率 容器(类型理论) 边缘计算 边缘设备 分布式计算 分析 推论 安全性令牌 星团(航天器) 计算机网络 聚类分析 数据挖掘 人工智能 操作系统 工程类 云计算 交通工程 机械工程 结构工程
作者
Suchanat Mangkhangcharoen,Jason Haga,Prapaporn Rattanatamrong
标识
DOI:10.1109/hpcc-dss-smartcity-dependsys53884.2021.00299
摘要

Many current IoT applications deployed at the edge use deep learning (DL) in their real-time processing and analytics. Not only inference but also training is moving to edge devices. DL application and dataset migration among these devices are mandatory for scenarios like node failure, user mobility or when nodes need to collaborate (e.g., distributed training). Container technologies and Kubernetes (K8s) are being increasingly adopted to manage infrastructure at the edge. Unfortunately, there is no built-in mechanism in K8s to support migration of stateful containers between its cluster nodes. The K8s cluster's master node generally launches a new fresh container in another node to replace the failed one. While there is an existing mechanism for migrating a Pod between K8s nodes, there is no past work investigating the migration of DL datasets and containerized DL applications among K8s cluster nodes. In this paper, we present our 1) comprehensive study on the effectiveness and limitations of existing checkpointing mechanisms for containerized DL applications and 2) our comparative performance study of several approaches in migrating DL datasets and applications in a K8s cluster. Our results show that migrating states of DL applications and restoring them from their previous states enables faster recovery (reducing training time by 10 to 73 percent) than re-running these models from the beginning regardless of the percentage of epochs that have completed. Additionally, our experimental results show that transferring a dataset between K8s workers using the K8s persistent volume with kubectl cp is generally suitable and efficient. However, when network latency is high, using our customized middleware with a feedback controller to migrate data in parallel can speed up total migration time compared to the K8s's persistent volume approach alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心柚子完成签到,获得积分10
刚刚
meixinhu完成签到,获得积分10
刚刚
最牛的kangkang完成签到 ,获得积分10
1秒前
仲夏发布了新的文献求助10
1秒前
Mr.Su完成签到 ,获得积分10
2秒前
小药师发布了新的文献求助10
2秒前
3秒前
4秒前
弓纪世完成签到,获得积分10
4秒前
科研通AI5应助ww采纳,获得10
5秒前
7秒前
7秒前
7秒前
无理完成签到 ,获得积分10
8秒前
DOCTORLI发布了新的文献求助10
9秒前
dandelion发布了新的文献求助10
9秒前
科目三应助后青春期的痘采纳,获得10
10秒前
11秒前
11秒前
帕提古丽发布了新的文献求助10
11秒前
12秒前
幽默的乐双完成签到,获得积分10
13秒前
lq发布了新的文献求助10
13秒前
14秒前
海盗船长完成签到,获得积分10
15秒前
16秒前
ljkshr应助糊涂的清醒者采纳,获得10
16秒前
16秒前
17秒前
lailight完成签到,获得积分10
17秒前
yc发布了新的文献求助10
18秒前
19秒前
wanci应助伶俐的以筠采纳,获得10
19秒前
hhhh发布了新的文献求助10
20秒前
20秒前
21秒前
后青春期的痘完成签到,获得积分10
21秒前
板栗发布了新的文献求助10
22秒前
瞌睡社畜发布了新的文献求助10
22秒前
郭晓波发布了新的文献求助30
22秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799773
求助须知:如何正确求助?哪些是违规求助? 3345093
关于积分的说明 10323514
捐赠科研通 3061617
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807090
科研通“疑难数据库(出版商)”最低求助积分说明 763462