Neighbor-Anchoring Adversarial Graph Neural Networks

计算机科学 对抗制 鉴别器 人工智能 图形 发电机(电路理论) 自动汇总 生成语法 理论计算机科学 机器学习 功率(物理) 量子力学 电信 探测器 物理
作者
Zemin Liu,Yuan Fang,Yong Liu,Vincent W. Zheng
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-1 被引量:11
标识
DOI:10.1109/tkde.2021.3087970
摘要

Graph neural networks (GNNs) have witnessed widespread adoption due to their ability to learn superior representations for graph data. While GNNs exhibit strong discriminative power, they often fall short of learning the underlying node distribution for increased robustness. To deal with this, inspired by generative adversarial networks (GANs), we investigate the problem of adversarial learning on graph neural networks, and propose a novel framework named NAGNN (i.e., Neighbor-anchoring Adversarial Graph Neural Networks) for graph representation learning, which trains not only a discriminator but also a generator that compete with each other. In particular, we propose a novel neighbor-anchoring strategy, where the generator produces samples with explicit features and neighborhood structures anchored on a reference real node, so that the discriminator can perform neighborhood aggregation on the fake samples to learn superior representation. The advantage of our neighbor-anchoring strategy can be demonstrated both theoretically and empirically. Furthermore, as a by-product, our generator can synthesize realistic-looking features, enabling potential applications such as automatic content summarization. Finally, we conduct extensive experiments on four public benchmark datasets, and achieve promising results under both quantitative and qualitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助别翘二郎腿采纳,获得10
刚刚
2秒前
可爱的苗条关注了科研通微信公众号
2秒前
我是老大应助鱼鱼鱼采纳,获得10
3秒前
3秒前
4秒前
精明外套发布了新的文献求助10
5秒前
飞快的珩发布了新的文献求助10
6秒前
6秒前
搞科研的崔桑完成签到,获得积分10
8秒前
9秒前
9秒前
一一发布了新的文献求助10
10秒前
科研通AI5应助橘子味的风采纳,获得10
12秒前
啵啵洋发布了新的文献求助10
13秒前
13秒前
精明外套完成签到,获得积分10
14秒前
鱼鱼鱼发布了新的文献求助10
15秒前
16秒前
16秒前
亦舒发布了新的文献求助10
17秒前
Sunshine完成签到,获得积分10
17秒前
缥缈的丹翠关注了科研通微信公众号
18秒前
科研通AI5应助大恩区采纳,获得10
18秒前
19秒前
Owen应助WWW采纳,获得10
20秒前
大小宇完成签到,获得积分10
20秒前
20秒前
20秒前
20秒前
风起完成签到,获得积分10
21秒前
21秒前
21秒前
赘婿应助莫比乌斯采纳,获得10
21秒前
Akim应助萧衍采纳,获得10
22秒前
22秒前
yuiii完成签到,获得积分10
22秒前
23秒前
23秒前
华仔应助MXX采纳,获得10
25秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345153
关于积分的说明 10323869
捐赠科研通 3061736
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807113
科研通“疑难数据库(出版商)”最低求助积分说明 763462